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Robert Orthogonality in Normed Linear Spaces
Via 2-HH Norm
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Abstract

The p-HH norms on X? were introduced by Kikianty and Dragomir in 2008. Besides that,
E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using
2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the
concept of 2-HH norm to Robert orthogonality in normed spaces and discuss some properties of
this orthogonality.

Keywords:  Robert orthogonality, p-HH norm, Isosceles orthogonality, Pythagorean orthogonality,
Hermite-Hadamards inequality .

1 Introduction

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:

Definition. [6, 9] For any convex function f : [a,b] — R([a,b] C R, the Hermite-Hadamard’s
inequality is defined as

a+b
2

(b—a)f( M}

)S/abf(t)dté(b—a)[ !

. This inequality has been extended (see-12) for convex function f : [x,y] — R, where [z,y] =
{(1 =t)z +ty,t € [0,1]}. In that case Hermite-Hadamards integral inequality becomes
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Using the convexity of f(x) = ||z||” (x € X,p > 1) and relation (1) we have
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Definition. (Generalized Geometric Mean)[9] The generalized geometric mean of order p of x and
y (z,y > 0 ,p is an extended real number) is defined by

1

" +1_ptl )
[#(%]P, if p#-—1,0,%+00
y—x ; __
logy—loglm’ if p= 1
LWV (2, y) = L), if p=0 and LP(z,2) =z
max{z,y} if p=oo
(min{z,y} if p=-00

A function d : X x X — R is called a metric on X if it satisfies the following conditions:
1. Ve,y € X, d(z,y) >0.

2. Vr,ye X, d(z,y)=0x=y.

3. Ve,y € X, d(z,y) =d(y,x).

4. Vr,y,z€ X, d(z,y) <d(z,z)+d(zv)

[1] A vector space X is said to be normed space if there is a mapping ||.|| : X — R on X satisfying
the properties:

1L |lz[| >0, [z =0ez=0.
2. [[Az]| = [A] fll:
3. [z +yll < 2|l +llyll-

An inner-product space on a vector space X is a mapping (.,.) : X — K, where (K = RorC
satisfying the following properties:

1. Va,y,2€ X, (r+4vy,2) = (x,2)+ (v, 2).
2. Vz,y € X anda € K, (azx,) = a(z,y).
3. Ve,ye X, (z,y) = (y,x).

4. Vex e X, (x,x)>0,(z,2) =0& z=0.

An inner-product on X defines a norm on X by ||z||* = (z,2). Every innerproduct spaces are
normed spaces, but the converse may not be true. A best example of normed space which is not an
inner-product space is I* = {(z,),x, € R: ) |z,| < oo} for p # 2.

Definition. [7] The p— HH norm on X? = X X X is defined by

|Knynu4ﬂ{:<[;na__wx+¢mwdw;

for any z,y € X2 and 1 < p < co.
The 2-HH norm is defined as follows:

1
uuww;mfaAuu—wx+wWﬁ

1
= Slllzl® + @, w) + lyll?
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HH-P Orthogonality

Definition. [3] A vector x is said to be orthogonal to y in the sense of Pythagorean if

2 2
lz = ylI* = llll” + Iyl

Let (X, ]|.]]) be a normed space. Then o Lyy_py <= [, ||(1 —t)z + ty||* dt = 1(|||* + |ly||*).

1.1.1 Properties of HH-P orthogonality

1.
2.
3.
4.

D.

HH-P orthogonality satisfies non-degeneracy, simplification, continuity and symmetry.
HH-P orthogonality is existent.

HH-P orthogonality is unique.

HH-P orthogonality is homogeneous if and only if the space is inner-product space.

HH-P orthogonality is additive if the space is an inner-product space.

Definition. [4, 5] A vector x is said to be orthogonal to y in the sense of isosceles orthogonal to y
in the sense of Isosceles if ||z + y|| = ||z — y|| .

1.2

HH-I orthogonality

Let x,y € X such that ||(1 —t)x + ty|| = ||(1 =t)x — ty|| a.e. on [0,1]. Then x is said to be HH-I
orthogonal to y iff

1 1
/H<1_t>x+tyudt:/ (1= )z — ty d.
0 0

1.2.1 Properties of HH-I Orthogonality

1.

The HH-I orthogonality satisfies non-degeneracy, simplification, continuity and symmetry
properties.

HH-I orthogonality is existent.
If HH-I orthogonality is homogeneous in a normed space X, then X is an inner-product space.
If HH-T orthogonality is additive, then the space is an inner-product space.

HH-I orthogonality is neither right additive nor homogeneous.

Definition. [2]
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1.3 HH-C Orthogonality
2] Let (X, ||.]]) be a normed space and ¢ € [0, 1]. then € X is said to be HH-C orthogonal to to

y € X if and only if
m 1
>y [ =080+ gl =0
j=1 0

satisfying the conditions
Zajﬁﬂj #0 and ZO[]'/BJJQ = Zaﬂ? =0.
j=1 j=1 j=1

HH-P orthogonality is a particular case of HH-C orthogonality

Let us take

3 1
Sy [ 0= 080+ gl =0

j=1 0

1 2 1
:>a1/ ||(1—t)61$+t71y||2dt+a2/ ||(1—t)52x+t72y||2dt+a3/ ||(1—t)531'+t’}/3y||2dt:0
0 0 0

Taking a; = -1, as =a3 =1, =0y =1, f3=0,v =v3 =1 and 7, = 0, we get
1 1 1
—/Hu—wx+wWﬁ+/Hu—oﬂﬁﬁ+/HwWﬁzo
0 0 0
! 2 1 2 2
:“—A 1 =)z + tyl"dt + S((l=]" + 1y = 0

1
1
. /Hﬂ—ﬂ$+wwﬁ=§mﬂV+MW
0

Now
3

D By = i+ a2feye + asByys = =1, > aiBi® = 1Bl + a2’ + 3B3° = 0
k=1 j=1

and ZO‘J’Y? = a1} + s +agy; =0
j=1
Which shows that HH-P orthogonality is a particular case of HH-C orthogonality.

HH-I orthogonality is a particular case of HH-C orthogonality

Let us take
2 1
oy [ 0= 080+l =0
j=1 0

1
:>a1/ II(1 —t)61$+t71y||2dt+oz2/ (1 —t)ﬁzx—i—tvngZdt =0
0 0
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Taking a; = %,Oég = _71,61 =pFy=1,71=1,7% = —1, we get
I I
-/ ||(1—t):v+ty||2dt——/ 1L =ty — ty|Pdi = 0
2 Jo 2 Jo

1 1
:>/ |\(1—t)x+ty\|2dt:/ (1 —t)a — ty|* dt
0 0

Now

2 2
Y aiBy=mpimtafre =1, Y i =aff+af; =0
k=1 k=1

2

and Z oy =i +agy; =0
=1

1.3.1 Properties of HH-C orthogonality
1. HH-C orthogonality satisfies non-degeneracy, simplification , and continuity property.
2. HH-C orthogonality is not symmetric.

3. HH-C orthogonality is neither additive nor homogeneous.

2 Main Results

Robert Orthogonality in 2-HH Norm
Definition. z 1y if VA € R, ||z + \y|| = ||z — A\y]|.

Using the concept of 2 — HH norm, [[(1 —t)z + tAy|| = [|[(1 — t)z — tAy|| a.e. on [0, 1], we have
the definition of orthogonality in 2 — H H norm is as follows:

1 1
/||(1—t)x+t)\y||2dt:/ (1 = t)z — tAy|” dt.
0 0

Non-degeneracy

If «T—LHH—RI'- Then

1
]2 = / 11— ) + |2 de
1
- / 11 = b — exyl? de
01
:/ (1 =tz +thy, (1 —t)x — tiy)dt
0

1 1
- ||xH2/ 91—t)2dt+||)\a:\|2/ 2t
0 0
1

= o llall* (14 32)
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It is clear that ||x|| = 0 = 2 = 0, which gives the non-degeneracy property.

Simplification

If vl gy gy for any A\, u € R,
! 2 ! 2
/ 11— ) + | dt = |uf? / 11— t)a + thg|? de
0 0
! 2
= P / 11— t)a — thy|? de
0
! 2
- / 1L =t — | de
0
Which shows that puz L gy _gruy for any p € R.

Symmetry
To check the symmetry of HH — R orthogonality,

1
1
10 = 0 Ml = S 402 el bt
! 2 1 2 2 2
I l=he X = Sl £

L1 —¢ y+ Mz 2 "I =)+ Aty 2, which shows that HH — R orthogonality is not
0 0
symmetric in 2 — H H norm.

Continuity

Ifx, »z,y, —wy,and Vn € N =z, 1y gy, . Then by the continuity of norm,

n—0o0

1 1
/ ]|(1—t)x+)\ty||2dt:/ lim || (1 ¢)an + Aya| dt
0 0

1
_ lim/ (L = t)en + Ayal? dt
0

n—00
1
= lim (1 = ), — My, ||* dt

n—o0 0

1
_ / 101 = D)z — x| dt
0
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Homogenity

Let z,y be elements of normed space X, and A\, u € R
/ (1 = )z + tuy || dt = /1<(1 — O+ tay, (1 — DAz + ) dt
= el [ 1= 02 2t [ o0 il [
= el? [ - opatk il [ P ey

= g(HMﬁH + )

Again,

1 1
/ 10— e — tyuy|*de = / (1= A — by, (1 — DA — byt
0 0
1

1 1
=l [ (1=t =20t [ o1 = e+ el [
1

1
= el [ (= 0P+ / £dt (oaly)

1
= §(||)\$||2 + [|pyll”)

Which shows that Robert Orthogonality is homogeneous in 2-HH norm if the space is an inner-
product space.

Lemma 2.1. [§/(R. C James, Vol.12, p-296) Let (X, |.||) be a normed linear space and x,y € X
lim g+ k)2 +yl| = llpe +yll =kl
U—>00

Theorem 2.2. Let X be a normed linear space. ThenVr € X, JueR:pur+ylyy_ gz,

Proof. Let x,y € X such that  # 0( for the case of x=0, the proof is trivial). Let us define a
function g : R x (0,1) — R by

9(1,) = |(1 = 1)+ ) + Al = (1 = )z + ) — M|, where A€ R, € R
= [[[(1 =)+ Mz + (1 =yl = [[(1 = t)p = Mz + (1 = t)y]|
and a function G : R — R by )
Gla) = [ sty
Now

lim g(p,t) = lim [[[[(1 = &)u + Ao+ (1 = )yl = Il(1 = t)p — AtJe + (1 = t)y]

HU—>00

1—-1

u—>c>o

g s e o o]

Copyright © 2020 IEEE-SEM Publications



IEEE-SEM, Volume 8, Issue 1, February-2020
ISSN 2320-9151 92

Let pu — —fsothatas,u—>oo§—>oo Thenu—i— _5—1-%

At)

i g00.t) = Jim {6+ 230 44 ~ e+

U—>00
2Xt
=(1- t)l—t ( by using Lemma 1.1)

= 2\t ||z]]

Hence lim,, o, G(pt) = lim, o fol g(p, t)dt = fol lim,, o0 g(pt, t)dt and by continuity of g,

lim Gl = [ 20¢ o] a
= Il > 0
Also for any t € (0, 1),
im g(—p,t) = Jim (1 = (=) + Ml + (1 = Oyl = (1 = )(=4) = Mo+ (1 = )]

= lim [J[(1 —t)n - Alﬁ]x — (L=t)yll = [[[(1 = ) + At]w — (1 = t)y]]

= (1—1) lim _ —
Suppose p + 2L = ¢ so that as g — 00, £ = oo and p — 2L = ¢ — 2
. 2\t
I}an}og<_ﬂ,t) =(1-1) hm [H ) — yH — ||€x — y”l
2\t
=(1- t)( ) ||| ( by using Lemma 1.1)
= —2)\tHxH

By the continuity of g, we have

1 1 1
lim G(—p) = lim | g(—p,t)dt = / lim g(—p,t)dt = / =2\ ||z|| dt = =X\ ||z]| < O.
0 0 0

H—>00 U—>00 U—>00

Sine G is continuous, so Jug € R : G(ug) = 0.

1 1
Hence/ (1 — ) (pox + y) + Mz||” dt = / (1 — ) (pox +y) — M| dt.
0 0
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