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Abstract 

In this paper the finite difference approximation for hyperbolic partial differential equations was 

applied and both the explicit and implicit methods of finite difference approximations were 

discussed. As we have seen from the computation results, finite difference method of solving 

differential equations is mesh size dependent. That is the method of the accuracy increases when 

the mesh size is small enough. The computation result also indicates that, using implicit finite 

difference method to solve hyperbolic partial differential equations gives a better approximation 

than explicit finite difference approaches. 
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1. Introduction 

Differential equations are interesting and important because they express relationships 

involving rates of change. Such relationships form the basis for developing ideas and studying 

phenomena in the sciences, engineering, economics, and increasingly in other areas, such as the 

business world and the stock market. We will see examples of applications as we learn more 

about differential equations(O’Neil, 2007)&(Hoffman, 2001a). Although mathematics has been 

used for centuries in one form or another with in many areas of science and industry, a modern 

scientific computing using electronic computer has its origin in research and development during 

the Second World War. In the late forties and early fifties, the foundation of numerical analysis 

was laid as a separate discipline of mathematics. 

Mathematical models based on partial differential equations (PDEs) are ubiquitous these days, 

arising in all areas of science and engineering, and also in medicine and finance. In many 

situations, finding the analytic solution to these partial differential equations or system of such 
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equations is unrealistic or even impossible in very simple cases(Press, 1996). Therefore, numerical 

methods for finding approximate solutions to PDE problems are of great importance. 

Recent modern development has increased enormously the scope for using numerical method. Not 

only has this been caused by the continuing advent of faster computer with large memories. Giant 

in problem solving capabilities through better mathematical algorithms have in many cases played 

an equally important role, this has meant that today one can treat much more complex and less 

simplified problems through massive amount of numerical calculation(Conte & De Boor, 1980). 

This development has caused the always close interaction between mathematics in one hand and 

science and technology on the other(Hoffman, 2001b). The focus of this paper is to find the 

numerical solution of partial differential equations by considering the important class of partial 

differential equations called hyperbolic equations by using finite difference method. 

2. Definition and examples of partial differential equations 

Definition 1: An equation containing the derivative or differential of one or more dependent 

variable with respect to one or more independent variable is called a differential equation (DE).  

Example.1 

                     a. xyxyy 27'4''' −=+−  and 
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Definition 2: A partial differential equation (PDE) is an equation that involves one or more 

derivatives of a dependent with respect to two or more independent variables. 

The following is an example of partial differential equation 

            𝐴(𝑡, 𝑥, 𝑦)𝑈𝑡 + 𝐵(𝑡, 𝑥, 𝑦)𝑈𝑥 + 𝐶(𝑡, 𝑥, 𝑦)𝑈𝑦 = F(t, x, y)                                                  (1.1)  

Where: - 

• t, x, y are the independent variables (often time and space) 

• A, B, C and F are known functions of the independent variables, 

• U is the dependent variable and is an unknown function of the independent variables. 

• partial derivatives are denoted by subscripts: 𝑈𝑡 =
𝜕𝑢

𝜕𝑡
 ,  𝑈𝑥= 

𝜕𝑢

𝜕𝑥
  , 𝑈𝑦𝑦 =

     𝜕2𝑢

𝜕𝑦2     
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Definition 3:  The order of a partial differential equation is the order of the highest derivative in  

                         the equation.  

Example.2:  a.
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 is second order partial differential equation. 

                        b.
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c is fourth order partial differential equation 

Definition 4: A partial differential equation is said to be linear, when the dependent variable and 

its derivatives occur only in the first degree and no products of the dependent variable and its 

derivatives.  

3.  Classification of linear second order partial differential equations 

The general linear differential equations of second order in two independent variables is of the 

form 

A𝑈𝑥𝑥 + B𝑈𝑥𝑦 +  C𝑈𝑦𝑦 + 𝐷𝑈𝑥 +  E𝑈𝑦 +  FU +  G = 0                                                  (1.2)  

Where A, B, C, D, E, F and G are functions of x and y  

The partial differential equations is called Elliptic equations if   𝐵2 + 4𝐴𝐶 < 0 

                                                                   Parabolic equation if    𝐵2 + 4𝐴𝐶 = 0 

                                                                    Hyperbolic equation if   𝐵2 + 4𝐴𝐶 > 0 

4.  Finite Difference methods  

Before addressing boundary value problems, it is better to develop further the notation of finite 

difference approximation of derivatives. Finite difference method for solving a partial differential 

equation can be done by transforming calculus problems in to an algebraic problem by 

i. By discretizing the continuous physical domain in to discrete difference grids. 

ii. Approximate the individual partial derivatives in the partial differential equation finite 

                 difference approximation. 
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iii. Substitute the finite differences in to the partial differential equations to obtain 

algebraic equations 

iv. Solve the resulting algebraic partial differential equations. 

Consider a function y(x) for which we want to compute the derivative y’(x) at some point x. 

From Taylor’s series expansion, we have 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +  
ℎ2𝑦′′(𝑥)

2!
+ ⋯                                                            (1.3)           

 𝑦(𝑥 − ℎ) = 𝑦(𝑥) − ℎ𝑦 ′(𝑥) +
ℎ2𝑦′′(𝑥)

2!
− ⋯                                                            ( 1.4)                                           

From (3) we have  

 𝑦′(𝑥) =
𝑦(𝑥+ℎ)−𝑦(𝑥)

ℎ
+ 𝑜(ℎ)                                                                                    (1.5)                  

 This is called the forward difference approximation 

 From (4) we have 

 𝑦′(𝑥) =
𝑦(𝑥)−𝑦(𝑥−ℎ)

ℎ
+ 𝑜(ℎ)                                                                                     (1.6)        

This is called the backward difference approximation 

   From (3) and (4) we have 

y’(x) 
𝑦(𝑥+ℎ)−𝑦(𝑥−ℎ)

2ℎ
+  o(ℎ2)                                                                              (1.7)    

This is called the central difference approximation for first order derivatives 

    Adding (3) and (4)        

𝑦(𝑥 + ℎ) + 𝑦(𝑥 − ℎ) = 2𝑦(𝑥) + 2
ℎ2

2!
𝑦′′(𝑥) + 2

ℎ4

4!
𝑦𝑖𝑣(𝑥) + ⋯ 

  Truncating order of ℎ4 and above we, have 

  y’’(x)  y’’(x) 
𝑦(𝑥+ℎ)−2𝑦(𝑥)+𝑦(𝑥−ℎ)

ℎ2 + 𝑜(ℎ2)                                                    (1.8)     
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Mesh generation: suppose the region 0≤ x ≤ L, t>0 be rectangular network of mesh lines. Let 

the interval [0, l] be divided in to M parts. Then the mesh length along the x-axis is ℎ =
𝐿

𝑀
. The 

points along the x-axis are xi=ih, i=0, 1, 2… M. Let the mesh length along the t-axis be k and 

define tj= jk. The mesh points are (xi, tj). We call tj as the jth   time level. At any point (xi, tj) we 

denote the numerical solution byui,j. 

 

Figure 1: Grid points 

By using the above coordinate plan 

              𝑢𝑥 ≈
𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
+ 𝑜(ℎ)                  Forward difference 

              𝑢𝑥 ≈
𝑢𝑖,𝑗−𝑢𝑖−1,𝑗

ℎ
+ 𝑜(ℎ)                  Backward difference         

             𝑢𝑥 ≈
𝑢𝑖+1,𝑗−𝑢𝑖−1,𝑗

ℎ
+ 𝑜(ℎ)                Central difference 

              𝑢𝑥𝑥 ≈
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2 + 𝑜(ℎ2)       

Similarly, with respect to the independent variable t, we have 

             𝑢𝑡 ≈
𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
+ 𝑜(𝑘)                       

             𝑢𝑡 ≈
𝑢𝑖,𝑗−𝑢𝑖−1,𝑗

ℎ
+ 𝑜(𝑘)                         
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              𝑢𝑡 ≈
𝑢𝑖+1,𝑗−𝑢𝑖−1,𝑗

ℎ
+ 𝑜(𝑘)                     

              𝑢𝑡𝑡 ≈
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2
+ 𝑜(𝑘2)       

5. Solution of hyperbolic partial differential equations 

          5.1   Introduction about hyperbolic partial differential equations 

In introduction section, we define the linear second order partial differential equation 

A𝑈𝑥𝑥 + B𝑈𝑥𝑦 +  C𝑈𝑦𝑦 + 𝐷𝑈𝑥 +  E𝑈𝑦 +  FU +  G = 0     

 and hyperbolic equation if B2- 4AC > 0. The simplest example of a hyperbolic equation is the 

one-dimensional wave equation. Study of the behavior of waves is one of the important areas in 

engineering. All vibration problems are governed by wave equations, 
∂2u

∂t2 = c2 
∂2u

∂x2, 𝑡 > 0, 0 ≤ x ≤ L            

Consider the problem of a vibrating elastic string of length L, located on the x-axis on the interval 

[0, L]. Let u(x, t) denote the displacement of the string in the vertical plane which is also the 

solution. Then, the vibration of the elastic string is governed by the one dimensional wave equation 

∂2u

∂t2   =  c2 
∂2u

∂x2, 𝑡 > 0, 0 ≤ x ≤ L                                                         (2.1)                

Where c2 is a constant and depend on the material property of the string, the tension T in the string 

and the mass per unit length of the string. In order that the solution of the problem exists and 

unique, we need to prescribe the following conditions 

     i. Initial condition: Displacement at t=0 or initial displacement is given by 

                                                   𝑢(𝑥, 0) = 𝑓(𝑥), 0 ≤ x ≤ L        

                     Initial velocity: 𝑢𝑡(𝑥, 0) = 𝑔(𝑥), 0≤ x ≤ L     

      ii. Boundary conditions: We consider the case when the ends of the string are                                                      

                                               fixed. Since the ends are fixed, we have the boundary  

                                                    conditions as u (0, t) =0, u (l, t) =0, t>0      
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         5.2 Explicit method 

Using the central difference method, we can write the approximation as 

∂2u

∂x2 ≈
1

h2 [𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗]                                                          (2.2)          

∂2u

∂t2 ≈
1

k2 [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1]                                                           (2.3)                               

Next substituting (2.1) and (2.2) from (2.3) we can get 

                   
1

k2 [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1]  =  
c2

h2 [𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗]      

     𝑂r        𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1=𝛼[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗],     where 𝛼 =
𝑐2𝑘2

ℎ2  

     Or       𝑢𝑖,𝑗+1=2𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1 + 𝛼[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗]      

Or     𝑢𝑖,𝑗+1=2(1 − 𝛼)𝑢𝑖,𝑗 + 𝛼[𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗] − 𝑢𝑖,𝑗−1                    (2.4) 

 

 

Remark: -if 𝛼=1 then (4) becomes 

                        𝑢𝑖,𝑗+1 = 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1                                                                  (2.5) 

    Figure 2: Nods in explicit 

method 
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       Computational procedure 

Since the explicit method (24) or (2.5) is of the three levels, we need data on two-time level t=0 

and t=k to start the computation. The boundary conditions u(0, t), u(L, t),t>0 gives the solution of 

all nodal points on the line x=0 and x=L for all time levels. We choose the values of k and h 

depending on the equation, this gives the value of 𝛼. The initial condition u(x,0) = f(x) gives the 

solution at all the nodal points on the initial line (level 0). The values required on the level t=k is 

obtained by writing a suitable approximation to the initial condition 

 𝜕𝑢

𝜕𝑥
 (𝑥, 0) = 𝑔(𝑥)                                                                                    (2.6) 

If we write the central difference approximation, we obtain 

                 
𝜕𝑢

𝜕𝑡
=

1

2𝑘
(𝑢𝑖,1 − 𝑢𝑖,−1)  = g(𝑥𝑖)                                                                               (2.7)   

Solving for 𝑢𝑖,−1 from (2.7) we get 

𝑢𝑖,−1=𝑢𝑖,1-2kg(xi)                                                                                       (2.8) 

Now we can use the method (2.4) or (2.5) at the nodes on the level t=k, that is, for j=0 we get 

                  𝑢𝑖,1 = 2(1 − 𝛼)𝑢𝑖,0 + 𝛼[𝑢𝑖+1,0 + 𝑢𝑖−1,0] − 𝑢𝑖,−1                                         (2.9)                                    

The external point 𝑢𝑖,−1that is introduced in the above equation is eliminated by using the above 

relation (2.8).                        

Figure 3: Nodes in explicit method for 𝛼 = 1 
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           𝑢𝑖,1=2(1 − 𝛼)𝑢𝑖,0 + 𝛼[𝑢𝑖+1,0 + 𝑢𝑖−1,0] − [𝑢𝑖,1 − 2𝑘𝑔(𝑥𝑖)] 

Or 2𝑢𝑖,1=2(1 − 𝛼)𝑢𝑖,0 + 𝛼[𝑢𝑖+1,0 + 𝑢𝑖−1,0] + 2𝑘𝑔(𝑥𝑖)                           (2.10) 

              This gives the values of all nodal points on the level t=k 

For example, if the initial condition is prescribed as 

          
  𝜕𝑢

𝜕𝑥
 (𝑥, 0) = 0       

We get (2.8), 𝑢𝑖,−1=𝑢𝑖,1  

The formula from (2.9) becomes   

           𝑢𝑖,1=(1 − 𝛼)𝑢𝑖,0 +
𝛼

2
[𝑢𝑖+1,0 + 𝑢𝑖−1,0]                                            (2.11) 

For= 1, the method implies to 

             𝑢𝑖,1=
1

2
[𝑢𝑖+1,0 + 𝑢𝑖−1,0]                                                                          (2.12) 

Thus the solution of all nodal points on level 1 are obtained. For t>k, that is for j≥1. We 

use the method (2.4) or (2.5).The computation is repeated for the required number of steps. If we 

perform m steps of computation, then we have to compute the solution up to time 𝑡𝑚= mk. 

Example.3: solve the wave equation utt=uxx with the boundary conditions u(0,t)=0=u(1,t) and the 

initial conditions ut(x,0)=0,u(x,0)=
x

2
(1-x)  

a. For k=0.1 and h=0.25, 0.2, 0.125 and 0.1for five time level 

b. For h=0.1 and k= 0.125, 0.1for five-time level 

Solution: The exact solution is given by: 

                        ( )



= +

++
=

0
3

12

)12sin()12cos(
)(

n n

xntn
xu


 

We can observe that even though it is an infinite series the analytic solution of the given 

wave equation at t=5 is zero. 

A. For k=0.1 and h=0.25, 0.2, 0.125 and 0.1for five-time level 
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     Table 1: the computational results for example 3 for h = 0.25 and k=0.1 

  

 

               Table 2: The computational results for example 3 for h = 0.2 and k=0.1 
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Table 3:  The computational results for example 3 for h = 0.125 and k=0.1 

 

 

       Table 4: The computational results for example 3 for h = 0.1 and k=0.1 
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        Figure 4: The relation between the size of h and k with the exact solution 

 

From the above results we can observe that when the values of h and k are small enough the 

approximation solution approaches to the exact solution at t=0.5. From table 4 there is a 

complete agreement between the approximation solution and the analytic solution at t=0.5 for 

h=k=0.1. 

 

                5.3 Implicit method 

We write the following approximation at (𝑥𝑖,𝑡𝑗) 

Using the central difference method, we can write the approximation as 

               
∂2u

∂t2 ≈
1

k2 [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1]                                                                               (2.13)                 

              
∂2u

∂x2
≈

1

2h2
[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1]                          (2.14)   
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Form equation (2.1), (2.13) and (2.14) we get 

   [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1]=
1

2h2
[𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗−1 −  2𝑢𝑖,𝑗−1 + 𝑢𝑖−1,𝑗−1]    

Or−
α

2
[𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗+1] + (1 + 𝛼)𝑢𝑖,𝑗+1 =

α

2
 [𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗−1] + 2𝑢𝑖,𝑗  − (1 + 𝛼)𝑢𝑖,𝑗−1       (2.15)                                                                               

 

 

 

 

 

 

     Computational procedure 

The initial condition u(x,0)=f(x) gives the solution at all the nodal points on the initial line (level 

0).The boundary conditions u(o, t)=g(x),u(l, t)=h(x),t>0 give the solution at all the nodal points on 

the line x=0 and x=l for all time levels. We choose the values of h and k. This gives the mesh ratio 

parameter 𝛼. 

On level one, we use the same approximation as the case of explicit method, that is, we 

approximate 

                         𝑢𝑖,−1=𝑢𝑖,1-2kg(xi)                                                                                               (2.16) 

Now, we apply the finite difference method (2.15) on level one 

For j=0, from (2.15) and (2.16) we get we obtain 

2𝑢𝑖,1- 𝛼(𝑢𝑖+1,1-𝑢𝑖,1 + 𝑢𝑖−1,1) = 2𝑢𝑖,0+2𝑘𝑔𝑖- k 𝛼 (𝑔𝑖+1 + 2𝑔𝑖 +𝑔𝑖−1)                                        (2.17) 

If the initial condition is 𝑢𝑡(x, 0) =0, the method simplifies as 

                 2𝑢𝑖,1- 𝛼(𝑢𝑖+1,1-𝑢𝑖,1 + 𝑢𝑖−1,1) = 2𝑢𝑖,0                                                                           (2.18) 

i,j 

i+1,j+1 i-1,j+1 

I-1, j-1 I+1,j-1 

i, j+1 

   

i,j-1 

Figure 5: Nodes in implicit method  

𝐿𝑒𝑣𝑒𝑙    𝑗 + 1 

𝐿𝑒𝑣𝑒𝑙    𝑗 

𝐿𝑒𝑣𝑒𝑙   𝑗 − 1 

i,j 
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The right hand side in (2.17) or (2.18) is computed. For i=1,2,3,. . . .,M-1,we obtain system of 

equations for 𝑢1,1, 𝑢2,1, . . ., 𝑢𝑀−1,1.The system of equations is solved to obtain the values of all 

nodal points on the time level one. For j>0, we obtain the method 2.15 and solve the system of 

equations on each mish line. The computations are repeated for the required number of steps. If 

we perform m steps of computation, and then we have to compute the solution up to 𝑡𝑚=mk. 

To make it more clear let us see the following example 

Example: 4 solve the wave equation 𝑢𝑡𝑡=𝑢𝑥𝑥, 0≤x≤1, Subject to the condition     

                   u(x,0)=sin(𝜋𝑥),𝑢𝑡(x,0)=0, u(0,t)=u(1,t)=0,t>0 

                 Use the implicit method with h=k=
1

4
 

Solution: we have c=1, h=k=
1

4
, then 𝛼 =

𝑐2𝑘2

ℎ2 =
(0.252)

0.252 =1 

For 𝛼=1, then (2.15) can becomes 

           −
1

2
[𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗+1] + 2(𝑢𝑖,𝑗+1 )= 

1

2
 [𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗−1] + 2𝑢𝑖,𝑗 – 

                2(𝑢𝑖,𝑗−1 )                                      j= 0, 1; i=1, 2, 3                                                         (2.19)                                     

  The boundary conditions give the values 𝑢0,𝑗 = 0 = 𝑢4,𝑗,for all j 

The initial condition u(x, 0) =sin (𝜋𝑥), gives the values 

            𝑢0,0=0 , 𝑢1,0 = sin (π/4)= (1/√2) 

             𝑢2,0= sin (π/2)= 1 

             𝑢3,0= sin (3π/4)= (1√2), 𝑢4,0= 0 

The initial condition 𝑢𝑡(x, 0) =0, gives the values 

              𝑢𝑖,−1, = 𝑢𝑖,1  

Therefore, for j=0 we get the equation 
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            0.5𝑢𝑖,−1 + 2𝑢𝑖,1 − 0.52𝑢𝑖+1,1= 
1

 2
 [𝑢𝑖+1,−1 + 𝑢𝑖−1,−1] + 2𝑢𝑖,0 − 2𝑢𝑖,−1  

            Or -𝑢𝑖−1,1 + 4𝑢𝑖,1 − 𝑢𝑖+1,1 = 2𝑢𝑖,0     

We have the following equations for j=0 and j=1 we have the following results 

         Under the give table below are the computation results from FORTRAN program for different 

           levels. 

Table 5. The computational result of example 4 using implicit method for h=k=0.25 

 

        5.4 Some application examples 

Simple and historically important example of a problem that includes the wave equation is 

provided by the study of the vibrating of a string, like a violin or guitar string. We set up the 

coordinate system as shown in the figure below. Consider an elastic string stretched between two 

pegs, as on a guitar we have to describe the motion of the string if it is given a small displacement 

and released to vibrate in a plane. Place the string along the x-axis from 0 to L and assume it 

vibrates in the x, y plane. We want a function u(x, y) at any time t>0, the graph of the function 

u=(x, t) of x, is the shape of the string at that time. Thus u(x, t) allows us to take a snapshot of the 

string at any time, showing it as a curve in the plane. For this reason u(x, t) is called the position 

function for the string . Let us neglect damping force such that air resistance and the weight of the 

string and assume that the tension T(x, t) in the string always acts tangentially to the string, and 

individual particles of the string move only vertically. Also assume that mass per unit length is 
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constant. 

                   

Example: 5 The transverse displacement u of a point at a distance x from one end   and at any 

time t of a vibrating string satisfies an equation 𝑢𝑡𝑡=4𝑢𝑥𝑥, with the boundary conditions u=0 at 

x=0, t>0 and u=0 at x=4,t>0 and initial conditions u=x(4-x)and 𝑢𝑡=0 at t=0,0≤x≤4.solve this 

equation numerically for one half period of vibration, taking h=1 and k= 
1

2
. 

Solution:  Computational result of example 5, for h=1 is given in the table below 

Table 6: Computational result of example 5, for h=1 

 

 

Example: 6 A string 80 cm long weighting 1N/m is stretched with a tension of 400N, at a point 

20 cm from one end and it is pulled o.6cm from equilibrium and released. Find the displacement 

along the string as function of time g(x) =0(no velocity)  

 Solution: T= 400N; g=9.81m/sec2   𝜌 =1N/M  

           c2   = T/ 𝜌=
400𝑥9.81

1
 = 3924 

IEEE-SEM, Volume 8, Issue 10, October-2020 
ISSN 2320-9151 124

Copyright © 2020 IEEE-SEM Publications

IEEESEM



 
 
  

 

Since ∆𝑥=0.1 we can find ∆𝑡 such that 𝛼=1 

           𝛼=
𝑐2∆𝑡 

∆𝑥2 
=

3924𝑥∆𝑡

0.01
=1 

           ∆𝑡= 0.001596 

Since we are choosing the value of 𝛼 to be one, the difference equation for the given equation is 

given by 

                 𝑢𝑖,𝑗+1= 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1 

Depending on the given information from the problem, at the time t=0, the string has the following 

shape 

 

 

 

 

 

               Fig 

By using the Pythagoras relation from the above figure we can calculate the values 

                 𝑢𝑖,𝑜 ,i=1, 2, 3, 4, 5, 6, 7 

               𝑢0,0= 0,       𝑢1,0= 0.3,      𝑢2,0= 0.6,      𝑢3,0= 0.5,      𝑢4,0= 0.4, 

                 𝑢5,0= 0.3,     𝑢6,0= 0.2,       𝑢7,0= 0,          𝑢8,0= 0 

These are the entries for the first row 

 Since 𝑢𝑡(x, 0) =g(x) = 0, we have 

           
      𝑢𝑖,𝑗+1−𝑢𝑖,𝑗−1 

2𝑘
=0, when j=o gives 𝑢𝑖,1= 𝑢𝑖,−1 

      0    0.1    0.2     0.3     0.4      0.5      0.6    0.7    0.8 

0.6cm 

400N 

Figure 7: A stretched strings 
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        Thus the entries of the second row are the same as the entries of the first row 

Putting j=0 in   𝑢𝑖,𝑗+1=𝑢𝑖−1,𝑗 +  𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1, we have 

                            𝑢𝑖,1=𝑢𝑖−1,0 +  𝑢𝑖+1,0 − 𝑢𝑖,−1 

                                    =𝑢𝑖−1,0 +  𝑢𝑖+1,0 − 𝑢𝑖,1 

    This implies   𝑢𝑖,1= 
1

2
(𝑢𝑖−1,0 +  𝑢𝑖+1,0) 

   Taking i=1, 2, 3, 4, 5, 6, 7 successively we obtain  

               𝑢1,1= 
1

2
(𝑢0,0 +  𝑢2,0)= 0.5(0+0.6) =0.3 

               𝑢2,1= 
1

2
(𝑢1,0 +  𝑢3,0)= 0.5(0.3+0.5) =0.4 

               𝑢3,1= 
1

2
(𝑢2,0 +  𝑢4,0)=0.5(0.6+0.4) =0.5 

               𝑢4,1= 
1

2
(𝑢3,0 +  𝑢5,0)=0.5(0.5+0.3) =0.4 

                 𝑢5,1= 
1

2
(𝑢4,0 +  𝑢6,0)=0.5(0.4+0.2) =0.3 

                  𝑢6,1= 
1

2
(𝑢5,0 +  𝑢7,0)=0.5(0.3+0.1) =0.2 

                  𝑢7,1= 
1

2
(𝑢6,0 +  𝑢8,0)=0.5(0.2+0) =0.1 

           These are the entries of the second row 

Similarly, the position of the string for each fraction of time is given in the following table below. 
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Table 7: The computation result for each step for example 6 

 

6. Conclusion 

In this report, we discussed the finite difference approximation for hyperbolic partial differential 

equations. In this method both the explicit and implicit methods of finite difference approximations 

were discussed. As we have seen from the computation results, finite difference method of solving 

differential equations is mesh size dependent. That is the method of the accuracy increases when 

the mesh size is small enough. The computation result also indicates that, using implicit finite 

difference method to solve hyperbolic partial differential equations gives a better approximation 

than explicit finite difference approaches. 
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