
CUMULATIVE DISTRIBUTION ON 

DEPARTURES 

Abstract: This paper proposes the new cumulative distributive function for density function  
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for the chosen random variable “departing that (N-n) no. of persons in 

the system.”.  
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Introduction This paper is continuous work to the previous one [2] which is briefed here. The 

Random variable of interest is to “departing that (N-n) no. of persons in the system.”  Instead of 

asking “how many arrivals take place in a particular time interval (Poisson)”, we ask for “how 

likely the system departing that (N-n) no. of persons.” Since X is continuous, the PDF should be 

a function. We had made some inferences about this unknown function. This means the 

probability distribution that takes into account of measurements those we have surveyed for a 

considerable period of time. So the output of the inference problem is the distributions of X. 

We charted the histograms for departing that (N-n) no. of persons in a particular time interval 

from which we found the density curves.  

In which case its probability density function is given by 

in which case its probability density function is given by 
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Where N is the restricted number of arrivals to the system. 

 is the departure rate.  

n is no. of persons remained in the system after taking (N-n) persons their service. 
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Graph of density function: 

 

                          Figure - 1 

Series 1 represents the probability density function graph when n = 0. 

Series 2 represents the probability density function graph when n = 1. 

Series 3 represents the probability density function graph when n = 2. 

Series 4 represents the probability density function graph when n = 3. 

Series 5 represents the probability density function graph when n = 4. 

X- axis represents Time, Y- represents f(x). 

Cumulative Distribution function:  

It is the probability that random variable takes values less than or equal to x  
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For n = N – 0 
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i.e. n=N. 

(N-n) =N-(N-0). 
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This gives up to certain time interval [o, x] the probability of departing zero customer from the 

system.  

For n = N-1 

(N-n) = N-(N-1) 
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This gives up to certain time interval [0, x] the probability of departing one customer from the 

system.  

For n = N-2 

(N-n) =N-(N-2) 
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This gives up to certain time interval [0, x] the probability of departing two customer from the 

system.  

For n = N-3 
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(N-n) =N-(N-3) 
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This gives up to certain time interval [0, x] the probability of departing three customer from the 

system. 

For n = N-4 

(N-n) = N-(N-4) 
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This gives up to certain time interval [0, x] the probability of departing four customer from the 

system. 

In general the corresponding Cumulative distributive function of above density function is 

defined as 
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Graph of Cumulative distributive function:  

 

Figure 2 

 

                   Series 1 represents the Cumulative distributive function graph when N = 0. 

Series 2 represents the Cumulative distributive function graph when N = 1. 

Series 3 represents the Cumulative distributive function graph when N = 2. 
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Series 4 represents the Cumulative distributive function graph when N = 3. 

Series 5 represents the Cumulative distributive function graph when N = 4.  

CONCLUSION 

This paper proposed the cumulative distribution function for density function  
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for the chosen random variable of “departing that (N-n) no. of persons in 

the system.”.  And the corresponding cumulative distribution function is  
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