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Abstract 

This research delves into the examination of weak solutions for boundary value 

problems associated with nonlinear partial differential equations. Utilizing the variational 

method, we explore the conditions necessary and sufficient for the existence and 

uniqueness of these weak solutions. Furthermore, we provide practical demonstrations 

by solving specific examples of nonlinear problems involving partial differential 

equations. The study concludes with an analysis of the benefits and limitations inherent 

in employing the variational method for such investigations. 

KEYWORDS: Weak Solutions, Nonlinear Partial Differential Equations, Boundary Value 

Problems, Variational Method, Existence, Uniqueness, Criteria, Examples. 

1. INTRODUCTION 

The study of nonlinear partial differential equations (PDEs) encompasses a wide array 

of physical phenomena and mathematical challenges. The pursuit of weak solutions for 

boundary value problems in this context is of paramount importance, as it sheds light on 
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the existence and uniqueness of solutions using the variational method. In this paper, 

we embark on an exploration of the variational approach to ascertain the criteria for the 

existence and uniqueness of weak solutions. Variational methods have been widely 

employed to study nonlinear PDEs due to their ability to provide insights into the 

existence and uniqueness of solutions. The work of [1] extensively explores variational 

techniques in the context of PDEs, highlighting their versatility in handling a broad class 

of nonlinear problems. The connection between weak solutions and variational methods 

has been a focal point in research. [2] presents a comprehensive overview of weak 

solutions and their relation to variational calculus, emphasizing their significance in 

nonlinear PDEs. The application of variational methods in solving nonlinear PDEs is 

well-documented in [3]. Also, [3] discuss the applications of variational techniques in the 

study of nonlinear elliptic and parabolic equations, providing valuable insights into their 

efficacy. Understanding the benefits and limitations of variational methods is crucial for 

researchers in the field. The work of [4] offers a comprehensive perspective on the 

advantages and challenges associated with variational techniques in nonlinear PDEs. 

This research also aims to solve specific nonlinear problems involving PDEs, thereby 

illustrating the practical application of the variational method. 

2. PRELIMINARY 

Definition (Weak Solution) 2.1. A weak solution (also referred to as generalized 

solution) to an ordinary differential equation or partial differential equation is a function 

for which the derivatives may not all exist but which is none the less deemed to satisfy 

the equation in some precisely defined sense.  

Definition (Variational Method) 2.2. The variational methods for boundary value 

problem requires notions and properties of function spaces, and notions, properties 

from operator theory and their applications in variational principle. Let’s look at the 

treatment of definitions, notions and results from function spaces, operator theory and 

variational principle. 

 example of the equation  

                                                                  ℎ(𝑥) = 0                                                         (2.2.0) 
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whereℎ(𝑥)is a continuous real function on ℝ. The problem of determining the local 

extremum (e. g. , the minimum) of the function 𝐻 which is a primitive of ℎ, i.e., for which  

𝐻′(𝑥) = ℎ(𝑥)                                                                                                             (2.2.1) 

is valid for every 𝑥 ∈ ℝ. In essence, if a point 𝑥0 ∈ ℝ exists at which the function 𝐻(𝑥) 

assumes its local minimum, then the derivative 𝐻′(𝑥) necessarily vanishes by familiar 

theorems of classical analysis and 𝑥0 is thus the solution of equation (2.2.0). This is just 

the idea which we will wish to exploit to ensure the existence of the solution of the 

operator equation 

                                     𝐴𝑢 = 𝑓                                                                       (2.2.2) 

In particular, we will be interested in the case when  𝐴 is a differential operatorand𝑋 =

𝑉, where 𝑉is the reflexive Banach space. The expression  

𝐴𝑢 − 𝑓 

will take the role of the function ℎ in equation (2.2.0); however, when constructing the 

‘primitive’ 𝐻 the following problem is immediately encountered: what really is the 

‘derivative’ in the case? 

 Equation (2.2.2) is solved in the space 𝑋. Therefore, we first develop a theory of 

differentiation for a functional, defined on normed linear space. The problem is then that 

of associating, with the operator 𝐴, a functional 𝐹 defined on 𝑋in such a way that its 

‘derivative’ is the expression  

𝐴𝑢 − 𝑓. 

We will try to prove that the functional 𝐹 has a minimum on the space 𝑋. If the analogue 

of the corresponding theorem from calculus is still valid (i.e if it holds that the derivative 

of the functional F vanishes at the point of the minimum), this will also serve as the 

proof of the existence of the weak solution of boundary value problem for the formal 

differential operator 𝐴𝑢 − 𝑓. 

Definition (Nonlinear Partial Differential Equations) 2.3. A partial differential 

equation F(𝑋, 𝑈, … , 𝐷𝛼𝑢) = 0  is called nonlinear partial differential equation if the 

function F(𝑋, 𝑈, … , 𝐷𝛼𝑢) is not linear in any of the arguments (𝑈, … , 𝐷𝛼𝑢). 
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3. SOLUTIONS 

The central idea revolves around the exploration of weak solutions for boundary value 

problems associated with nonlinear partial differential equations using the variational 

method. This involves the establishment of necessary and sufficient criteria for the 

existence and uniqueness of weak solutions. We shall consider specific examples of 

nonlinear partial differential equations to check if boundary value problems have at least 

one weak solution  

Example 3.1. Show that the boundary value problem  

−∆𝑢 + 𝑢|𝑢|𝑝−2 = 𝑓 𝑜𝑛 𝛺, 𝑢 = ɸ 𝑜𝑛 𝜕𝛺. 

has at least one weak solution. 

Solution  

Here, we need to show that the boundary value problem stated above has at least one 

weak solution. Therefore, recall the general form of partial differential equation of order 

2𝑘 

∑ (−1)|𝛼|

|𝛼|≤𝑘

𝐷𝛼𝑎𝛼(𝑥, 𝛿𝑘𝑢(𝑥)) = 𝑓(𝑥)                       (3.1.0) 

We now seek to obtain the coefficient of 𝑎𝛼. From the example, we have  

−∆𝑢 + 𝑢|𝑢|𝑝−2 = − (
𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕𝑥2
2 + ⋯ +

𝜕2𝑢

𝜕𝑥𝑁
2 ) + 𝑢|𝑢|𝑝−2 

=     − (∑
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

) + 𝑢|𝑢|𝑝−2 

= ∑(−1)𝑖

𝑁

𝑖=1

𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
) + 𝑢|𝑢|𝑝−2 

= ∑(−1)𝑖

𝑁

𝑖=1

𝜕

𝜕𝑥𝑖

(𝜂𝑖) + 𝜂0
𝑝−2𝜂0 
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= ∑(−1)𝑖

𝑁

𝑖=1

𝜕

𝜕𝑥𝑖

(𝜂𝑖) + 𝜂0
𝑝−2+1

 

⟹ ∑(−1)𝑖

𝑁

𝑖=1

𝜕

𝜕𝑥𝑖

(𝜂𝑖) + |𝜂0|𝑝−1 = 𝑓(𝑥)                        (3.1.1) 

Comparing (3.1.1) with  (3.1.0), we have 

𝑎𝑖 = 𝜂𝑖   𝑎𝑛𝑑 𝑎0 = |𝜂0|𝑝−1 

We now investigate the equation above to see if there exist at least one weak solution 

by verifying that the conditions of theorem on existence of weak solution in chapter 

three are satisfied by the coefficients  𝑎𝑖 = 𝜂𝑖   𝑎𝑛𝑑 𝑎0 = |𝜂0|𝑝−1. 

To show that 𝑎𝛼(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝), we show that the coefficient 𝑎𝛼 satisfy the growth 

conditions below  

|𝑎𝑖| = 𝜂𝑖 ≤ ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=0

≤ 𝑐𝑖 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

], 

And|𝑎0| = |𝜂0|𝑝−1 ≤ ∑ |𝜂𝑖|𝑝−1 ≤ 𝑐𝑖[𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑ |𝜂𝑖|𝑝−1𝑁
𝑖=0 ]𝑁

𝑖=0  

where𝑐1 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁, 1 < 𝑝 < 𝑁. 

For 𝑝 > 𝑁, we have  

|𝑎𝑖| = 𝜂𝑖 ≤ ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=0

≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=0

], 

and 

|𝑎0| = |𝜂0|𝑝−1 ≤ ∑|𝜂0|𝑝−1

𝑁

𝑖=1

≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=0

] 

Where𝑐𝑖(|𝜂0|) = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁, 𝑝 > 1, 𝑝 > 𝑁. 

This shows that the coefficients 𝑎𝑖 = 𝜂𝑖and 𝑎0 = |𝜂0|𝑝−1 satisfy  𝑎𝑖(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) for all 

𝑝 > 1 and so 𝑎𝛼(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) is verified. 
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We now show that the potentiality condition is satisfied. That is  

𝑎𝛼𝛽(𝑥, 𝜂) = 𝑎𝛽𝛼(𝑥, 𝜂)and𝜂𝛼𝑎𝛼𝛽(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) hold, 

Now  

𝑎𝑖𝑗(𝑥, 𝜂) =
𝜕𝑎𝑖

𝜕𝜂𝑗
=

𝜕𝑎0

𝜕𝜂𝑖
=

𝜕|𝜂0|𝑝−1

𝜕𝜂𝑖
= 0. 

𝑎𝑗𝑖(𝑥, 𝜂) =
𝜕𝑎𝑖

𝜕𝜂0
=

𝜕𝜂𝑖

𝜕𝜂𝑗
= 0 

Therefore 𝑎𝑖𝑗(𝑥, 𝜂) = 𝑎𝑗𝑖(𝑥, 𝜂) = 0 

Since 𝑎𝑖𝑗(𝑥, 𝜂) = 0, then  

𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂) = 0 

⟹ |𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂)| = |0| ≤ ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=0

≤ 𝑐𝑖 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=0

] 

where 𝑖 = 1,2, … , 𝑁, 𝑐𝑖 = 1, 𝑔𝑖(𝑥) = 0, 𝑝 > 1. That is  

𝑎𝑖𝑗(𝑥, 𝜂) = 𝑎𝑗𝑖(𝑥, 𝜂)and𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝)  are satisfied  

We now show that the monotonicity condition is satisfied. That is  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

holds for all 𝜂, 𝛾 ∈ ℝ𝑚, now  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)](𝜂𝛼 − 𝛾𝛼)

|𝛼|≤𝑘

 

= ∑[𝑎𝑖(𝑥, 𝜂) − 𝑎𝑖(𝑥, 𝛾)](𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (𝑎0(𝑥, 𝜂) − 𝑎0(𝑥, 𝛾))(𝜂0 − 𝛾0) 

= ∑(𝜂𝑖 − 𝛾𝑖)(𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (|𝜂0|𝑝−1 − |𝛾0|𝑝−1)(𝜂0 − 𝛾0) 
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∑(𝜂𝑖 − 𝛾𝑖)(𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (|𝜂0|𝑝−1 − |𝛾0|𝑝−1)(𝜂0 − 𝛾0) ≥ 0 

If 𝜂0 ≥ 𝛾0 or 𝛾0  ≤  𝜂0 then  

∑(𝜂𝑖 − 𝛾𝑖)(𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (|𝜂0|𝑝−1 − |𝛾0|𝑝−1)(𝜂0 − 𝛾0) ≥ 0 

Therefore, the monotonicity condition above is satisfied  

Finally, we show that the coercivity condition holds.  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3                     (3.1.2) 

But  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 = ∑(η
i
)

𝑁

𝑖=1

𝜂𝑖 + |𝜂0|𝑝−1𝜂0 

= ∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 𝜂0
𝑝−1𝜂0 

= ∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 𝜂0
𝑝−1+1

 

= ∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 𝜂0
𝑝
 

 

 

Put  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 = ∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 𝜂0
𝑝
 

in equation (3.1.2) 
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∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 𝜂0
𝑝 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3      ⟹ 

∑ 𝜂𝑖
2

𝑁

𝑖=1

− 𝑐1 ∑|𝜂𝑖|𝑝

𝑁

𝑖−1

+ 𝜂0
𝑝 − 𝑐2|𝜂0|𝑝 + 𝑐3 ≥ 0 ⟹ 

 

∑ 𝜂𝑖
2

𝑁

𝑖=1

− 𝑐1 ∑|𝜂𝑖|
𝑝

𝑁

𝑖−1

+ 𝜂0
𝑝(1 − 𝑐2) + 𝑐3 ≥ 0                                      (3.1.3) 

We choose  

𝑐1 = (∑|𝜂𝑖|𝑝

𝑁

𝑖−1

)

−1

, 𝑐2 = 1, 𝑐3 = 2 

then by substitution into (3.1.3) we have  

∑ 𝜂𝑖
2

𝑁

𝑖=1

− (∑|𝜂𝑖|𝑝

𝑁

𝑖−1

)

−1

× ∑|𝜂𝑖|
𝑝

𝑁

𝑖−1

+ 𝜂0
𝑝(1 − 1) + 2 ≥ 0 ⟹ 

∑ 𝜂𝑖
2

𝑁

𝑖=1

− 1 + 2 ≥ 0 ⟹ 

∑ 𝜂𝑖
2

𝑁

𝑖=1

+ 1 ≥ 0 

Therefore, the coercivity condition is satisfied and the boundary value problem under 

consideration has at least one weak solution. 

Example 3.2. Verify that the Dirichlet problem  

− ∑
𝜕

𝜕𝑥𝑖
(|

𝜕𝑢

𝜕𝑥𝑖
|

𝑝−2 𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

= 𝑓(𝑥) 𝑜𝑛 𝛺, 𝑢 = ɸ 𝑜𝑛 𝜕𝛺 

has at least one weak solution. 
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Solution  

We first find the coefficient of 𝑎𝛼, as follows  

− ∑
𝜕

𝜕𝑥𝑖
(|

𝜕𝑢

𝜕𝑥𝑖
|

𝑝−2 𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

= 𝑓(𝑥) 

= ∑(−1)𝑖
𝜕

𝜕𝑥𝑖
((

𝜕𝑢

𝜕𝑥𝑖
)

𝑝−2 𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

 

= ∑(−1)𝑖
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑝−2+1𝑁

𝑖=1

 

= ∑(−1)𝑖
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑝−1𝑁

𝑖=1

 

⟹ ∑(−1)𝑖
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑝−1𝑁

𝑖=1

= 𝑓(𝑥) 

Comparing this with (3.1.0), we have 𝑎𝑖 = |𝜂𝑖|𝑝−1  𝑎𝑛𝑑 𝑎0 = 0. We now want to 

investigate to see whether or not Example 3.2 has at least one weak solution by 

verifying the conditions  

We first verify the growth condition 

|𝑎𝑖| = |𝜂𝑖|
𝑝−1 ≤ ∑|𝜂𝑖|

𝑝−1

𝑁

𝑖=0

 

≤ 𝑐1 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

], 

where 𝑐1 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁, 1 < 𝑝 < 𝑁.  

For 𝑝 > 𝑁, we have  

|𝑎𝑖| = |𝜂𝑖|
𝑝−1 ≤ ∑|𝜂𝑖|

𝑝−1

𝑁

𝑖=0
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≤ 𝑐1(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

] 

Where 𝑐1(|𝜂0|) = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁, 𝑝 > 1, 𝑝 > 𝑁. 

This shows that the coefficients 𝑎𝑖 = |𝜂𝑖|
𝑝−1 satisfy 𝑎𝑖 ∈ 𝐶𝐴𝑅∗(𝑝) for all 𝑝 > 1 and so 

𝑎𝛼(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) is verified.  

We now show that the potentiality condition is satisfied. That is  

𝑎𝛼𝛽(𝑥, 𝜂) = 𝑎𝛽𝛼(𝑥, 𝜂)and𝜂𝛼𝑎𝛼𝛽(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) hold 

Now 

𝑎𝑖𝑗(𝑥, 𝜂) =
𝜕𝑎𝑖

𝜕𝜂𝑗
=

𝜕𝑎0

𝜂𝑖
= 0 =

𝜕|𝜂𝑖|𝑝−1

𝜕𝜂0
=

𝜕𝑎𝑖

𝜂0
=

𝜕𝑎𝑗

𝜕𝜂𝑖
= 𝑎𝑗𝑖(𝑥, 𝜂) 

and 

|𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂)| = |0| ≤ ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

≤ 𝑐𝑖 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

] 

where 𝑖 = 1,2, … , 𝑁, 𝑐1 = 1, 𝑔𝑖(𝑥) = 0, 𝑝 > 1. That is  𝑎𝑖𝑗(𝑥, 𝜂) = 𝑎𝑗𝑖(𝑥, 𝜂) and 𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂) ∈

𝐶𝐴𝑅∗(𝑝) are satisfied. 

We now show that the monotonicity condition is satisfied, that is  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

holds for all 𝜂, 𝛾 ∈ ℝ𝑚.  Now  

 

 

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) 
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= ∑[𝑎𝑖(𝑥, 𝜂) − 𝑎𝑖(𝑥, 𝛾)](𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (𝑎0(𝑥, 𝜂) − 𝑎0(𝑥, 𝛾))(𝜂0 − 𝛾0) 

= ∑(|𝜂𝑖|
𝑝−1 − |𝛾𝑖|

𝑝−1)(𝜂𝑖 − 𝛾𝑖) + 0 + 0(𝜂0 − 𝛾0)

𝑁

𝑖=1

 

= ∑(|𝜂𝑖|
𝑝−1 − |𝛾𝑖|

𝑝−1)(𝜂𝑖 − 𝛾𝑖) ≥ 0

𝑁

𝑖=1

 

Now if 𝜂𝑖 > 𝛾𝑖, then |𝜂𝑖|𝑝−1 > |𝛾𝑖|
𝑝−1 and so 𝜂𝑖 − 𝛾𝑖 > 0. Therefore the monotonicity 

condition holds. 

Finally we show that (3.1.2)holds. 

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3                    (3.1.2) 

But  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 = ∑|𝜂𝑖|
𝑝−1𝜂𝑖

𝑁

𝑖=1

= ∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

 

Therefore from (3.1.2), we have  

∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3 

∑|𝜂𝑖|𝑝

𝑁

𝑖=1

− 𝑐1 ∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

− 𝑐2|𝜂0|𝑝 + 𝑐3 ≥ 0 

Choose  

𝑐1 = (∑|𝜂𝑖|𝑝

𝑁

𝑖=1

)

−1

, 𝑐2 = 0, 𝑐3 = 2 

We have by substitution  
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∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

+ 1 ≥ 0 

Therefore (3.1.2) holds and the boundary value problem has at least one weak solution. 

Example 3.3. Consider the formal differential operator  

−∆𝑢 + |𝑢|𝑠𝑢 = 𝐴𝑢 on 𝛺 

where𝑠 is a positive parameter. Show that the problem above has at least one weak 

solution in the 𝑊1,2(𝛺) under Dirichlet boundary value condition. 

For 𝑠 ≥ 0 when 𝑁 = 2 and 𝑠 ≤
4

𝑠−2
 when 𝑁 > 2, we have 𝑝 ≥ 𝑠 + 1 

Solution  

−∆𝑢 + |𝑢|𝑠𝑢 = 𝐴𝑢 

−∆𝑢 + |𝑢|𝑠𝑢 = − ∑
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

+ |𝑢|𝑠𝑢 

= ∑(−1)𝑖
𝜕

𝜕𝑥𝑖
(

𝜕𝑢

𝜕𝑥𝑖
)

𝑁

𝑖=1

+ 𝑢𝑠+1 

= ∑(−1)𝑖
𝜕

𝜕𝑥𝑖

(𝜂𝑖)

𝑁

𝑖=1

+ |𝜂0|𝑠+1                         (3.3.0) 

Comparing (3.3.0)with (3.1.0), we have 𝑎𝑖 = 𝜂𝑖 and 𝑎0 = |𝜂0|𝑠+1 

We now show that 𝑎𝛼 ∈ 𝐶𝐴𝑅∗(𝑝) by verifying the growth conditions.  

Since 𝑝 = 2 and  N ≥ 2, then we cannot have the case of 𝑝 > 𝑁. 

For 𝑝 ≤ 𝑁 

|𝑎𝑖| = |𝜂𝑖| ≤ ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1
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                         ≤ 𝑐1 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

], 

Where𝑖 = 1,2, … , 𝑁. 

 

|𝑎0| = |𝜂0|𝑠+1 ≤ ∑|𝜂0|𝑝−1

𝑁

𝑖=1

≤ 𝑐1 [𝑔𝑖(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

] 

Where𝑐1 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁. 

and 

|𝑎0| = |𝜂0|𝑠+1 ≤ |𝜂0|𝑝 ≤ 𝑐0 [𝑔0(𝑥) + |𝜂0|𝑝−1 + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

] 

𝑐0 = 1, 𝑔0(𝑥) = 1, 𝑝 ≥ 𝑠 + 1, 𝑝 ≥ 0 

This shows that  𝑎𝛼 ∈ 𝐶𝐴𝑅∗(𝑝), 𝑖 = 0,1,2, … , 𝑁, for 𝑝 ≤ 𝑁 

We now show that the potentiality condition is satisfied. That is  

𝑎𝛼𝛽(𝑥, 𝜂) = 𝑎𝛽𝛼(𝑥, 𝜂)and𝜂𝛼𝑎𝛼𝛽(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝) 

𝑎𝑖𝑗(𝑥, 𝜂) =
𝜕𝑎𝑖

𝜕𝜂𝑗
=

𝜕𝑎0

𝜕𝜂𝑖
=

𝜕|𝜂0|𝑠+1

𝜕𝜂𝑖
= 0 

𝑎𝑗𝑖(𝑥, 𝜂) =
𝜕𝑎𝑗

𝜕𝜂𝑖
=

𝜕𝑎𝑖

𝜕𝜂0
=

𝜕𝜂𝑖

𝜕𝜂0
= 0 , therefore  𝑎𝑖𝑗(𝑥, 𝜂) = 𝑎𝑗𝑖(𝑥, 𝜂) and we also show that  

𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝)as follows  

|𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂)| = |0| ≤ 𝑐1 [𝑔𝑖(𝑥) + |𝜂𝑖|𝑝 + ∑|𝜂𝑖|
𝑝

𝑁

𝑖=0

] 

Where𝑐1 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁, 𝑝 ≥ 0, 𝑝 > 2, 𝑝 ≤ 𝑁 

we now show that the monotonicity condition holds  
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∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

holds for all 𝜂, 𝛾 ∈ ℝ𝑚.  Now  

 

 

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) 

= ∑[𝑎𝑖(𝑥, 𝜂) − 𝑎𝑖(𝑥, 𝛾)](𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (𝑎0(𝑥, 𝜂) − 𝑎0(𝑥, 𝛾))(𝜂0 − 𝛾0) 

= ∑(𝜂𝑖 − 𝛾𝑖)(𝜂𝑖 − 𝛾𝑖) + (|𝜂𝑖|
𝑠+1 + |𝛾𝑖|

𝑠+1)(𝜂0 − 𝛾0)

𝑁

𝑖=1

 

= ∑(𝜂𝑖 − 𝛾𝑖)
2 + (|𝜂𝑖|

𝑠+1 + |𝛾𝑖|
𝑠+1)(𝜂0 − 𝛾0) ≥ 0

𝑁

𝑖=1

 

Now if (𝜂𝑖 − 𝛾𝑖)
2 > 0, then |𝜂𝑖|

𝑠+1 > |𝛾𝑖|
𝑠+1and so 𝜂0 − 𝛾0 > 0, therefore the monotonicity 

condition holds. 

Hence the expression  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

Next we show the coercivity condition holds  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3 

But  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 = ∑(𝜂𝑖)𝜂𝑖

𝑁

𝑖=1

+ |𝜂0|𝑠+1𝜂0 

IEEE-SEM, Volume 12, Issue 1, January 2024 
ISSN 2320-9151 14

Copyright © 2024 IEEE-SEM Publications

IEEESEM



                    = ∑(𝜂𝑖)2

𝑁

𝑖=1

+ 𝜂0
𝑠+2 

By substitution, we have  

∑(𝜂𝑖)2

𝑁

𝑖=1

+ 𝜂0
𝑠+2 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3 

∑(𝜂𝑖)
2

𝑁

𝑖=1

+ 𝜂0
𝑠+2 − 𝑐1 ∑|𝜂𝑖|𝑝

𝑁

𝑖=1

− 𝑐2|𝜂0|𝑝 + 𝑐3 ≥ 0 

Choose   

𝑐1 = (∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

)

−1

, 𝑐2 = (|𝜂0|𝑝)−1, 𝑐3 = 2 

∑(𝜂𝑖)
2

𝑁

𝑖=1

+ 𝜂0
𝑠+2 − 1 − 1 + 2 ≥ 0 

⟹ ∑(𝜂𝑖)
2

𝑁

𝑖=1

+ 𝜂0
𝑠+2 ≥ 0 

Then  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 ≥ 0 

Since (𝜂𝑖)
2 ≥ 0 and 𝜂0

𝑠+2 ≥ 0 . 

Therefore, there exist at least one weak solution of the boundary value problem. 

Example 3.4. Let ℎ(𝜂) be a continuous non decreasing function on ℝ, 𝑓 ∈ 𝐿2(𝛺) and 

suppose that 𝑐 > 0 exist such that |𝑔(𝜂)| ≤ 𝑐(|𝜂|𝜏 +) holds for all 𝜂 ∈ ℝ(𝜂 ⊂ ℝ𝑁 , 𝑁 >

1, 𝜂 ∈ 𝑐0,1), where 𝜏 is an arbitrary positive number for 𝑁 = 2, we have  

𝜏 =
𝑁+2

𝑁−2
 . 

Prove that the Dirichelet problem for the formal differential equation  
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−∆𝑢(𝑥) + ℎ(𝑢(𝑥)) = 𝑓(𝑥) 𝑜𝑛 𝛺 

has at least one weak solution.  

Solution  

We first determine the coefficients of 𝑎𝛼 as follows  

−∆𝑢(𝑥) + ℎ(𝑢(𝑥)) = − ∑
𝜕

𝜕𝑥𝑖

𝑁

𝑖=1

(
𝜕𝑢

𝜕𝑥𝑖
) + ℎ(𝑢(𝑥)) = ∑(−1)𝑖

𝜕

𝜕𝑥𝑖

𝑁

𝑖=1

(𝜂𝑖) + ℎ(𝜂0)      (3.4.0) 

Comparing (3.4.0) this with (3.1.0), we have 𝑎𝑖 = 𝜂𝑖   𝑎𝑛𝑑 𝑎0 = ℎ(𝜂0) 

We now check to see whether example 4 with the coefficient above satisfy the 

boundedness property. That is to show that𝑎𝛼 ∈ 𝐶𝐴𝑅∗(𝑝). 

|𝑎𝑖| = |𝜂𝑖| ≤ ∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

≤ 𝑐𝑖 [𝑔𝑖(𝑥) + |𝜂0|𝑝 + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=𝑖

] 

Where𝑖 = 1,2, … , 𝑁. 

|𝑎0| ≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

] 

Where𝑐𝑖 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁. 

For 𝑝 > 𝑁 

|𝑎𝑖| ≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

] 

From the coefficients obtained above, for 𝑝 > 𝑁 

|𝑎𝑖| = |𝜂𝑖| ≤ |𝜂0|𝑝−1 ≤ ∑|𝜂0|𝑝−1

𝑁

𝑖=1

≤ 𝑐𝑖 [𝑔𝑖(𝑥) + |𝜂0|𝑝 + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

] 

𝑐𝑖 = 1, 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑁 
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|𝑎0| = |ℎ(𝜂0)| ≤ 𝑐0(|𝜂0|𝜏 + 1) ≤ 𝑐0 [|𝜂0|𝜏 + 1 + ∑|𝜂𝑖|𝑝

𝑁

𝑖=1

] ≤ 𝑐0 [𝑔0(𝑥) + |𝜂𝑖|
𝜏 + ∑|𝜂𝑖|𝑝

𝑁

𝑖=1

] 

where𝑐0 > 0, 𝑔0(𝑥)  ≡ 1, 𝜏 =
𝑁+2

𝑁−2
, 𝑝 ≥ 0. 

For 𝑝 > 𝑁 

|𝑎𝑖| = |𝜂𝑖| ≤ ∑|𝜂𝑖|
𝑝−1

𝑁

𝑖=1

≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + |𝜂0|𝑝 + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

] 

where𝑐𝑖 = 1, 𝑔𝑖(𝑥) ≡ 0 

|𝑎0| = |ℎ(𝜂0)| ≤ 𝑐0|𝜂0| [𝑔0(𝑥) + |𝜂0|𝑝 + ∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

] 

where𝑐0 = |ℎ(𝜂0)| + |ℎ(−𝑡)| 𝑎𝑛𝑑 𝑔0(𝑥) ≡ 1 

This shows that  𝑎𝛼 ∈ 𝐶𝐴𝑅∗(𝑝), 𝑖 = 0,1,2, … , 𝑁. 

Therefore, the boundedness property is satisfied  

We now show that the potentiality condition  

𝑎𝛼𝛽(𝑥, 𝜂) = 𝑎𝛽𝛼(𝑥, 𝜂)and𝜂𝛼𝑎𝛼𝛽(𝑥, 𝜂) ∈ 𝐶𝐴𝑅∗(𝑝)  are satisfied  

𝑎𝑖𝑗 =
𝜕𝑎𝑖

𝜕𝜂𝑗
=

𝜕𝑎0

𝜕𝜂𝑖
=

𝜕(ℎ(𝜂0))

𝜕𝜂𝑖
= 0and𝑎𝑗𝑖 =

𝜕𝑎𝑗

𝜕𝜂𝑖
=

𝜕𝑎𝑖

𝜕𝜂0
=

𝜕𝜂𝑖

𝜕𝜂0
= 0 

Therefore 𝑎𝑖𝑗(𝑥, 𝜂) = 𝑎𝑗𝑖(𝑥, 𝜂) = 0, 𝑠ince 𝑎𝑖𝑗(𝑥, 𝜂) = 0, then 

𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂) = 0 ⟹ |𝜂𝑖𝑎𝑖𝑗(𝑥, 𝜂)| = |0| ≤ ∑|𝜂𝑖|

𝑁

𝑖=1

≤ 𝑐𝑖(|𝜂0|) [𝑔𝑖(𝑥) + ∑|𝜂𝑖|𝑝−1

𝑁

𝑖=1

] 

where 𝑖 = 0,1,2, … , 𝑁, 𝑐𝑖 = 1, 𝑔𝑖(𝑥) = 0. 

Hence, the potentiality condition is satisfied. 

Next we show that the monotonicity condition holds. That is  
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∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

holds for all 𝜂, 𝛾 ∈ ℝ𝑚.  But  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) 

= ∑[𝑎𝑖(𝑥, 𝜂) − 𝑎𝑖(𝑥, 𝛾)](𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (𝑎0(𝑥, 𝜂) − 𝑎0(𝑥, 𝛾))(𝜂0 − 𝛾0) 

= ∑(𝜂𝑖 − 𝛾𝑖)(𝜂𝑖 − 𝛾𝑖)

𝑁

𝑖=1

+ (ℎ(𝜂0) − ℎ(𝛾0))(𝜂0 − 𝛾0) 

= ∑(𝜂𝑖 − 𝛾𝑖)
2

𝑁

𝑖=1

+ (ℎ(𝜂0) − ℎ(𝛾0))(𝜂0 − 𝛾0). 

then 

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

For𝜂𝑖 > 𝛾𝑖 for 𝑖 = 0,1,2, … , 𝑁 and also  𝜂𝑖 < 𝛾𝑖 since ℎ(𝜂) is a non-decreasing function. 

Similarly if 𝜂𝑖 = 𝛾𝑖 for 𝑖 = 0,1,2, … , 𝑁, then the expression above is equal to zero. 

Therefore  

∑ [𝑎𝛼(𝑥, 𝜂) − 𝑎𝛼(𝑥, 𝛾)]

|𝛼|≤𝑘

(𝜂𝛼 − 𝛾𝛼) ≥ 0 

and the monotonicity condition is verified. 

Finally, we show that the coercivity condition holds, that is  

∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 ≥ 𝑐1 ∑ |𝜂𝛼|𝑝

|𝛼|=𝑘

+ 𝑐2|𝜂0|𝑝 − 𝑐3 

But  
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∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|≤𝑘

𝜂𝛼 = ∑ 𝑎𝛼(𝑥, 𝜂)

|𝛼|=𝑘

𝜂𝛼 = ∑(𝜂𝑖)𝜂𝑖

𝑁

𝑖=1

+ ℎ(𝜂0)𝜂0 

                    = ∑(𝜂𝑖)
2

𝑁

𝑖=1

+ ℎ(𝜂0)𝜂0 

We have by substitution 

∑(𝜂𝑖)2

𝑁

𝑖=1

+ ℎ(𝜂0)𝜂0 − 𝑐1 ∑|𝜂𝑖|
𝑝

𝑁

𝑖=1

− 𝑐2|𝜂0|𝑝 + 𝑐3 ≥ 0 

Choose  

𝑐1 = (∑|𝜂𝑖|𝑝

𝑁

𝑖=1

)

−1

, 𝑐2 = 0, 𝑐3 = 1, since the problem is Dirichelet type 

By substitution, we have  

∑(𝜂𝑖)2

𝑁

𝑖=1

+ ℎ(𝜂0)𝜂0 − 1 − 0 + 1 ≥ 0 ⟹ ∑(𝜂𝑖)2

𝑁

𝑖=1

+ ℎ(𝜂0)𝜂0 ≥ 0 

Hence the coercive condition is satisfied 

Therefore, the boundary value problem has at least one weak solution. 

 

4. CONCLUSION 

In conclusion, this research contributes to the understanding of weak solutions in the 

realm of nonlinear partial differential equations. The variational method proves 

instrumental in discerning the conditions for the existence and uniqueness of such 

solutions. Through the application of this method to specific examples, we gain valuable 

insights into practical problem-solving. The study concludes with an assessment of the 

benefits and limitations inherent in the variational approach for investigating nonlinear 

boundary value problems in partial differential equations. 
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