Student performance analysis for better career

Monisha.T.P, Dr.B.Sreepathi

M.Tech 4th Sem, Dept. of CSE, RYMEC, Bellary, India; Head of Dept., Dept of ISE, RYMEC, Bellary, India. Email: monishagvictor@gmail.com

ABSTRACT

A college student’s life can be primarily categorized into domains such as education, health, social and other activities which may include daily chores and travelling time. Time management is crucial for every student. A self-realisation of one’s daily time expenditure in various domains is therefore essential to maximize one’s effective output. This paper presents how a mobile application using Fuzzy Logic and Global Positioning System (GPS) analyses a student’s lifestyle and provides recommendations and suggestions based on the results.

Keywords: Fuzzy Logic, GPS, Android Application

1 INTRODUCTION

A college student’s life is multidimensional. Students are expected to be academically excellent, physically fit and socially active along with managing their daily chores and pursuing their fields of interest. This structure would not only help students to engage all activities but also help them live a balanced life. This practice would eventually help them make better career choices on the basis of their interests. For such a practice one needs to invest a threshold amount of time and effort in all the activities. However only a certain number of students are involved and excel in such a practice. In recent times various student related issues have been addressed by researchers using fuzzy logic. Patel et al. [1] have evaluated student’s academic performance considering various factors such as attendance, internal exam, lab assignments, and team work evaluation. Chrysafiadi and Virvou [2] have developed a fuzzy logic system which understands the forgetting process of a student. Ingoley and Bakal [3] have discarded the traditional methodology of assessment of student performance by also considering personal factors such as stress and accepting the fact that the evaluating system can be non-transparent. Gokmen et al. [4] have made a fuzzy evaluation system which helps to evaluate students on the basis of their performance and the type of examinations by setting up an assessment criterion before an examination. Hameed and Sorensen [5] have developed a reliable and robust system using Gaussian membership functions for student evaluation. Xu et al. [6] have personalized the web-based educational system with respect to learning materials, quiz and advices achieving effectiveness in learning. Huapaya [7] has developed fuzzy student diagnosis model to help teachers evaluate students by providing a high degree of flexibility.

A. About Fuzzy Logic

Over the past three decades, fuzzy logic is widely used in all problem-solving domains. One of the reasons for such instantaneous growth since its inception is its usability across all sectors be it Dynamic Programming, Process Control or Optimization. Fuzzy logic discards the theory of ‘Absolute Truth’ and instead proposes a new theory of ‘Partial Truth’, also referred as degree of membership

B. Problem Formulation

The problem can be divided into three major parts:

Data Collection: Using GPS and Google Places API, data collection of all the locations visited and time spent at each location by the user.

Fuzzification: Fuzzification is the crisp input and calculate the values of corresponding membership functions.

Defuzzification: Set up a fuzzy inference system based on certain rules and then return recommendations and suggestions.
2 WORKING PRINCIPLE

A. Data Collection

A college student is carrying his/her smart phone almost everywhere. Hence using the GPS extraction of his/her position throughout the day is possible. In the application and testing of this paper, the mobile application was developed on Android while the point of interest was extracted using Google Maps API by querying the user’s location extracted from GPS.

Let X be the set of all tags defined as $X = x$ is a tag. Analysing the way, a person lives is governed by many parameters, but in a typical student’s life we are mainly concerned about one’s health, education, leisure and social life. However, a person also invests certain amount of time which fails to fall under these categories. An example of this would be travelling time.

Activities like these falls under the $S = \text{gym}$. Say x invests certain amount of time which fails to fall under these categories. An example of this would be travelling time.

Weighing criteria: For a given purpose, different locations would have different amount of productivity and impact. For example, hospital and gym both fall under the $S = \text{health}$ category. However, one visits a gym to increase his physical activity and $Z = \text{hospital}$ has a negative health impact. Hence, visiting a hospital if he/she has fallen sick. Hence, visiting a hospital has a negative impact on one’s health. So, we have to handle these two situations differently.

A function Y is defined as $Y: X \rightarrow R$ such that $Y(x)$ for every x denotes the time spent at the location tag x. For example, let $x = \text{gym}$. Say $Y(x) = 0.5$. This implies a person has spent 30 minutes at a gym in the entire day. The unit of time is set in hours throughout this paper.

A function Z is defined as $Z: S \rightarrow [100, 100]$ such that $Z(x)$ for every x S denotes the intensity of the tag x with respect to the $S = \text{social}$ category. Similarly, one can define Z_{leisure}, Z_{work}, and Z_{home} for the $S = \text{health}$, leisure, work, and social categories respectively. The range $[100, 100]$ is chosen for normalization purposes. For example, let $x = \text{gym}$. Say $Z_{\text{health}}(x) = 50 > 0$ as gym has a positive health impact. Let $y = \text{hospital}$, then $Z_{\text{health}}(y) = 20 < 0$ as hospital has a negative health impact. However, $Z_{\text{health}}(x) = Z_{\text{health}}(y) = 0$ as both x and y don’t contribute to the $S = \text{leisure}$ category. Also note that if a tag t belongs to two different categories, then its weightage in both the categories cannot be 0.

For both Y and Z don’t include the $S = \text{home}$ tag as it is a special case. This is explained later.

Assigning weights: One is free to assign the weights independently. However, for better results, one can assign weights by conducting a survey to understand how appropriately a location tag fulfils the purpose of a category. For instance, consider the $S = \text{health}$ category. In the survey a sample population was asked to rank every x H in an order of fulfilment of their positive $S = \text{health}$ benefits. Consider the following survey with

<table>
<thead>
<tr>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cafe, Restaurant</td>
<td>Going out with friends and family.</td>
</tr>
<tr>
<td>Supermarket, Gas Station</td>
<td>Chores</td>
</tr>
<tr>
<td>Gym, Ground, Hospital</td>
<td>Exercise or Health Treatment</td>
</tr>
<tr>
<td>Cinema Hall, Spa</td>
<td>Leisure and Relaxation</td>
</tr>
<tr>
<td>Bank, Business Associates</td>
<td>Work</td>
</tr>
</tbody>
</table>

TABLE I: Sample Locations and Purposes
Fig. 1: Survey for positive health weights

Fig. 2: Survey for negative health weights

\[H = \{ \text{gym, playground, swimming pool, health club, hospital, pharmacy, physiotherapist, dentist, doctor} \} \]

Fig. 1 shows a survey for determining positive weights in the health category. As 54.1% people taking the survey voted playground as their maximum positive benefit from the health category, the corresponding weight for \(x = \text{playground} \) is computed as

\[Z_H(x) = \frac{54.1 \times 100}{100} = 54.1. \]

Fig. 2 shows a survey for determining negative weights in the health category. As 41% people taking the survey voted doctor as their maximum non-fulfilment from the health category, the corresponding weight for \(x = \text{doctor} \) is computed as

\[Z_H(x) = -\frac{41 \times 100}{100} = -41. \]

Home tag: The time spent at the home location might not be entirely used for rest and leisure purpose only. One might practice yoga at one’s home and the equivalent time should be added to the health category. Let \(\tau \) denote the total time spent at home. And \(\tau_H, \tau_L, \tau_W, \tau_O \) denote the equivalent time in respective categories. This time is taken as user input through the mobile application. For better results a random push notification system is used to learn the characteristics of the user. The home tag will be associated with weights \(\xi_H, \xi_S, \xi_L, \xi_W, \xi_O \) which denote the intensity of the tags at home. For instance, \(\xi_W = 30 \) and \(Z_W(\text{office}) = 50 > 30 \) as working at home might not be as productive as working at office.

B. Fuzzification

Fuzzification of time: Consider a person \(p \). Suppose \(p \) visits tags \(\{x_1, x_2, \ldots, x_n\} \) with the time spent at these locations denoted by \(\{Y(x_1), Y(x_2), \ldots, Y(x_n)\} \). Let \(K_H, K_L, K_S, K_W, K_O \) denote the overall time spent in health, leisure, social, work, and other categories respectively. Then

\[K_H = \sum_{x \in H} Y(x) + \tau_H \]

Similarly, \(K_L, K_S, K_W, K_O \) are defined.

We define the following fuzzy sets for all the categories. These sets define the type of lifestyle of a person is living in each category. Here leisure also includes rest.

- **health** = \{unfit, fit, proactive\}
- **leisure** = \{hectic, ideal, lazy\}
- **social** = \{reserved, sociable, over social\}
- **work** = \{lethargic, hardworking, industrious\}
- **others** = \{non-productive, productive\}

The membership functions for these fuzzy sets are constructed by conducting a survey on a sample population. The data from the survey can be approximated by using quantile range and trapezoidal membership functions. However, one can use various other techniques to plot membership functions. For instance, in a sample survey the hours spent by fit students in the health category were: 0.45, 1.25, 2, 2.25, 2.5, 2.5, 2.75, 2.75, 3, 4, 4.25. So, with respect to the inter quantile range \(Q_1 = 2, Q_2 = 2.5, Q_3 = 3, \text{inf} = 0.45, \text{and sup} = 4.25 \). The trapezoidal membership function for the linguistic term “fit” under the health category using these values.
Fig. 4 shows the membership functions for each linguistic of all categories.

Fuzzification of score: Not only the time spent at a location is important but also how the time is spent is important too. This effective utilization of time is denoted by a score MS, ML, MO, MW, and MH for the respective categories. The score for the social category is calculated as follows

$$M_S = \sum_{x \in S} Y(x)Z_S(x) + \tau_C \xi_S$$

Similarly, other scores can be defined. The fuzzy set of linguistic terms “low_score”, “ideal_score” and “high_score” define the fuzzy scores in each category. The membership function of these sets in all categories is calculated similar to the fuzzy time membership functions by conducting a survey. For instance, a survey conducted on a sample of fit students is shown in TABLE II. Hence inf = 11.25, $Q_1 = 29.75, Q_3 = 42$, sup = 50. Accordingly, the membership function for the linguistic term “ideal_score” under the health category is shown in Fig. 5. Similarly, one can plot the membership functions for the entire fuzzy set across all categories.

![Fig. 4: Membership functions for each linguistic of all categories.](image1)

![Fig. 5: Membership function for “ideal score” under health category.](image2)

![Fig. 6: Calculation of membership values.](image3)
Given the input data, $Y(x)$, $Z(x)$, r_s and ϕ, where $s = S, L, O, W, H$, one calculates corresponding K_r and M_r. Using surveys, the membership functions for all linguistic terms in all categories for both fuzzification of time and score can be determined. Hence the membership value of K_r and M_r in the respective categories for all the linguistic terms can be determined. Let R_1, R_2, R_3 be a set of recommendations. Now every R_k $(1 \leq k \leq N)$ will be dependent on a set of linguistic terms. For example, a recommendation $R = \text{"All work and no play make Jack a dull boy."}$ will be outputted if a person is spending too much time and effort in work and less in his leisure and social life. That is, he/she has a “industrious” work life with a high work score and has a “reserved” social life with a low social score and a “hectic” life with respect to leisure with a low score. So, attributes of R can be represented as $\{K_w = \text{“industrious”}, M_w = \text{“high score”}, K_s = \text{“reserved”}, M_s = \text{“low score”}, K_l \text{“hectic”}, M_l = \text{“low score”}\}$

Let R_k be a recommendation with attributes $\{a_1, a_2, a_3, a_n\}$. Here each a_j $(1 \leq j \leq n)$ is a combination of score/time with respect to a linguistic term of a category. Hence as shown previously one can calculate its membership value for each attribute. Here n can vary for each R_k. For instance, Fig. 6 shows the membership functions of M_H. Let a_1, a_2, a_3 be the following attributes

$$a_1 = M_{\text{H; low score}}$$
$$a_2 = M_{\text{H; ideal score}}$$
$$a_3 = M_{\text{H; high score}}$$

Hence μ_1, μ_2, μ_3 for $M_H = 17$ as seen from Fig. 6 will be 0.6, 0, 0.1 respectively. Using equal weighing criteria for each a_j, we can calculate a score of each recommendation $\rho(R_k)$ defined as

$$\rho(R_k) = \frac{1}{n} \sum_{j=1}^{n} \mu_j$$

Now, using the most probable criterion the recommendation with the maximum score value $\rho(R_k)$ will be displayed as output.

3 EXPERIMENT

A survey conducted in IIT Kharagpur was conducted to determine all the membership functions for all linguistic terms across all the categories. Some of the membership functions are shown in this paper. The mobile application was installed on the student’s phone and the results were analyzed. A random student was picked and his data for the day was analyzed. TABLE III shows the tags he visited throughout the day and their corresponding time and weights. The score for each tag is also enumerated. TABLE IV shows the total time and score across all the categories. The recommendations in the set R where $R = \{R_1, R_2, R_3, R_4\}$ were considered.

R_1 = “Catch up a movie this evening.”

R_2 = “Work is worship.”

R_3 = “Family matters.”

R_4 = “Hit the gym.”

The attributes of R is shown in TABLE V. The membership values for each attribute is shown in TABLE VI and the corresponding score of each recommendation is also enumerated. As $\rho(R_k)$ is maximum the mobile application recommended the student to “Catch up a movie this evening.”

<table>
<thead>
<tr>
<th>Tag</th>
<th>Time</th>
<th>Weight</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>university</td>
<td>$Y(x) = 6$</td>
<td>$ZW(x) = 50$</td>
<td>300</td>
</tr>
<tr>
<td>library</td>
<td>$Y(x) = 4$</td>
<td>$ZW(x) = 20$</td>
<td>80</td>
</tr>
<tr>
<td>home</td>
<td>$rW = 2$</td>
<td>$rS = 30$</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>$rS = 0.5$</td>
<td>$rS = 30$</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$rH = 0.5$</td>
<td>$rH = 20$</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$rL = 6.5$</td>
<td>$rS = 30$</td>
<td>195</td>
</tr>
<tr>
<td>Cafe</td>
<td>((x) = 1)</td>
<td>(\xi O = 10)</td>
<td>10</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>Supermarket</td>
<td>((x) = 1)</td>
<td>(ZO (x) = 9)</td>
<td>9</td>
</tr>
<tr>
<td>Grocery</td>
<td>((x) = 0.5)</td>
<td>(ZO (x) = 10)</td>
<td>5</td>
</tr>
<tr>
<td>Travel</td>
<td>((x) = 1)</td>
<td>(ZO (x) = 15)</td>
<td>15</td>
</tr>
</tbody>
</table>

Table IV: Experiment Calculations of total time and score for each category

<table>
<thead>
<tr>
<th>Recommandation</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>{KL = “hectic”, ML = “less score”, KW = “industrious”, MW = “high score”}</td>
</tr>
<tr>
<td>(R_2)</td>
<td>{KW = “lethargic”, MW = “less score”, KL = “lazy”, ML = “high score”}</td>
</tr>
<tr>
<td>(R_3)</td>
<td>{KS = “reserved”, MS = “less score”}</td>
</tr>
<tr>
<td>(R_4)</td>
<td>{KH = “unfit”, MH = “less score”}</td>
</tr>
</tbody>
</table>

Table V: Experiment Recommendation attributes

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Membership Values</th>
<th>Score ((\rho(R_i)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>(1.0, 0.8, 1.0, 1.0)</td>
<td>0.95</td>
</tr>
<tr>
<td>(R_2)</td>
<td>(0.0, 0.0, 0.0, 0.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>(R_3)</td>
<td>(1.0, 0.7)</td>
<td>0.85</td>
</tr>
<tr>
<td>(R_4)</td>
<td>(1.0, 0.8)</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table VI: Experiment Recommendation score calculation

4 CONCLUSION

From our proposed work we can conclude that the analysis of the activities of the students is very much important for a bright career. From our analysis we have observed that student’s day to day activities and their involvement in various in campus and out campus activities vary and their performance during the exam are interlinked. The proposed work can predict and give recommendations to the students based on fuzzification. The weight matrix of each and every activity are calculated based on that ten intelligent scores has been assigned to every student. Students performance are vandalized during the exam time and they depend on the time which they spend on various places and the activities which they perform. Based on this the students are classified into three categories namely cream student, normal student and average student.

ACKNOWLEDGMENT

The authors would like to thank Professor Sudhirkumar Barai of the Civil Engineering Department, IIT Kharagpur for his continued and unconditional guidance. An exemplary teacher and a magnificent person, we consider ourselves lucky to have been taught by him and to have worked under his supervision. Without his course, “Soft Computing Tools in Engineering”, and his cooperation the preparation of this paper would not have been possible.

REFERENCES
