

Some Types of contra $\tau^*\text{-}G\text{-}Closed$ Maps

by

Maysaa Zaki Salman and Dunya Mohamed Hameed

Department of Mathematics , College of Education, Mustansiriyah University , Baghdad - Iraq

Maysaa-zaki@uomustansiriyah.edu.iq and dunya_mahamed@uomustansiriyah.edu.iq

Abstract:

This article introduces new contra closed maps kind called (contra τ^* -G-closed map, contra - (τ^* -G, g) - closed map and contra τ^* -G*-closed map) in topological space and we give the relation among them. Also, several properties of these maps are proved.

Keywords : τ^* -g- closed sets , τ^* -g- open sets , τ^* -g- closed maps and τ^* -g- open maps , contra – closed maps and contra –open maps .

<u>1- Introduction :</u>

In 1982, Dunham .W[4] introduced and study the notion of generalized closure operator CL^{*} and defined a topology called τ^* -topology. Pushpalatha et al [10] introduced and studied τ^* -generalized closed sets and τ^* -generalized open sets and examined its properties .In [5], Eswaran and Nagaveni .N They are introduced the investigated τ^* -g- closed maps and τ^* -g- open maps .

The notion of contra – closed maps and contra open maps were introduce and study by Baker. C .W,[1]

The aim of this paper is devoted to introduce some kinds of contra τ^* -G*-closed maps and give the relation between them , also discussion some properties of these maps.

2- Preliminaries:

Definition (2-1),[4]:

Let B be subset of X, the generalized closure operate $CL^*(B)$ is defined by the intersection of all g-closed sets containing B.

Definition (2-2), [10]: Let B be a subset of space X, then topology τ^* is defined by $\tau^* = \{G : cL^*(G^c) = G^c\}.$

Definition (2-3):

- 1- A subset B of (X, τ) is called g-closed [8] in X if $CL(B) \subseteq G$ whenever $B \subseteq G$ and G is open in X. The complement B^c is g-closed is called (g-open).
- 2- A subset B of (X, τ^{*}) is called τ^{*}-g-closed [10] if CL^{*}(B) ⊆ G whenever B ⊆ G and G is τ^{*}-open in X. The complement of τ^{*}-g-closed set is called (τ^{*}-g-open).

The class of all g- closed [resp. g-open , τ^* -g-closed-GC(τ^* -GO(X) X) d and τ^* -g-open] sets in X is denoted by GC(X) [resp. GO(X) , τ^* -GC(X) and τ^* -GO(X)].

Remark (2-4), [10]:

- (i) all closed (resp. open) set is τ^* -g-closed (resp. τ^* -g- open)set .
- (ii) all g-closed (resp. g-open)set is τ^* -g-closed (resp. τ^* -g- open)set .

Definition (2-5): [7]: A space X is

- (a) $T_{1/2}$ space [7] if all g-closed (resp, g-open) set in X is closed (resp, open) set
- (b) τ^* -Tg space if all τ^* -g-closed set in X is g-closed in X.

Definition (2-6):

if k: $X \rightarrow \dot{Y}$ is said to be:

- Closed (resp. Open) [3] map if for all closed (resp. open) set W in X , k(W) is a closed(resp. open) set in Ý.
- 2- g-closed map [7] if for all closed set W in X, k(W) is g-close set in \dot{Y} .
- 3- g-open map [7] if for all open set Win X , k(W) is g-open set in \dot{Y} .
- 4- τ^* -G-closed [5] if for all g-closed subset W of X, then k(W) is τ^* -g-closed subset of \dot{Y} .
- 5- τ^* -G-open [5] if for all g-open subset W of X, then k(W) is τ^* -g-open subset of \dot{Y} .
- 6- Contra-Closed [1] if for all closed set W in X , k(W) is an open set in \dot{Y} .
- 7- Contra- Open [1] if for all open set Win X , k(W) is a closed set in \dot{Y} .
- 8- Contra g-closed [2] if for all closed set Win X, k(W) is g-open set in \dot{Y} .

<u>3-Some Types of contra τ^* -G-Closed Maps:</u>

Contra closed maps types called [contra τ^* -G-closed, contra - (τ^* -G, g) - closed and contra τ^* -G*-closed) and the relations between them we will be present in this section.

Definition (3-1):

A map k: $X \to \dot{Y}$ is said to be **contra** τ^* -**G** –**closed** if for all closed set W of X, then k(W) is τ^* -g- open set of \dot{Y} .

Example(3-2): Let $X = \dot{Y} = \{\ell, v, \ell\}$, $\tau = \{X, \phi, \{\ell, v\}\}$ and $\sigma = \{\dot{Y}, \phi, \{\ell\}, \{\ell, v\}\}$ and let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ by $k(\ell) = \ell$, $k(v) = \ell$ and $k(\ell) = v$. It is plain that map k is contra τ^* -G – closed.

Proposition (3-3):

- (i) all contra closed map is contra τ^* -G closed.
- (ii) all contra g-closed map is contra τ^* -G closed.

Proof (i):- Let k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ be contra closed and W is closed set in X. Thus k(W) is open set in \dot{Y} , since [all open set is τ^* -g-open], then k(W) is τ^* -g-open set in \dot{Y} . Hence k is contra τ^* -G-closed map.

Proof (ii):- Let map k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ be contra g-closed and W is a closed set in X Thus, k(W) is an g-open set in \dot{Y} , and since[all g-open set is τ^* -g-open], then k(W) is τ^* -g-open set in \dot{Y} . Hence k is contra τ^* -G-closed map.

The proposition (3-3) converse is not true, the next example to show that:

Example (3-4):- Let $X = \dot{Y} = \{\ell, v, \vartheta\}$ with the topologies $\tau = \{X, \phi, \{\ell\}, \{\ell, v\}\}$ and $\sigma = \{\dot{Y}, \phi, \{\ell\}\}$.Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ is define by $k(\ell) = \ell$, k(v) = v and $k(\vartheta) = \vartheta$. It is plain that map k is a contra τ^* -G – closed , but k is not contra closed and contra g-closed , since for closed set $W = \{v, \vartheta\}$ in X, $k(W) = k(\{v, \vartheta\}) = \{v, \vartheta\}$ is not open (resp. g-open) in \dot{Y} .

Next we will define and present some notion and results ,that shall need in this work.

Definition(3-5): A space X is called τ^* - $T_{1/2}$ - space if all τ^* -g-closed set in X is closed in X.

Example (3-6):-

Let $X = \{ \ell, v, \ell \}$, $\tau = \{ X, \phi, \{\ell\}, \{v\}, \{\ell, v\}\}$. It to see that X is $\tau^* - T_{1/2}$ - space, since $\tau^* - GC(X) = \{ X, \phi, \{\ell\}, \{\ell, \ell\}, \{v, \ell\}\}$ = closed sets in a space X.

Proposition (3-7): If X is τ^* -T_{1/2}- space , then all τ^* -g-open set in X is an open set **Proof :**

Let W is τ^* -g-open set in X, then W^c is τ^* -g – closed in X, since X is τ^* -T_{1/2} - space Thus, W^c is closed set in X, then W is an open in X.

Same way, we show the next proposition :

Proposition (3-8): If X is τ^* -T_g- space , then all τ^* -g-open set in X is an g-open set

The next proposition give the condition that make converse of proposition (3-3) true:

Proposition (3-9): Let k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ be contra τ^* -g - closed map , then k is

- (i) Contra closed if \dot{Y} is τ^* -T_{1/2}- space.
- (ii) Contra g-closed if \dot{Y} is τ^* -T_g- space.

Proof (i): Let a set W be a closed in X. Since k is contra τ^* -g - closed. Thus k(W) is τ^* -g - open in \dot{Y} . Also, since \dot{Y} is τ^* -T_{1/2}- space so we get k(W) is an open in \dot{Y} . Hence, k is contra closed map.

Some way we proof step-ii-.

Definition (3-10):

A map k: $X \to \dot{Y}$ is said to be **contra -(\tau^*-G , g)-closed** if for all τ^* -g - closed set W of X, then k(W) is g- open set of \dot{Y} .

Example(3-11):

Let X={ ℓ, ν, ℓ }, $\tau = \{X, \phi, \{\ell, \nu\}\}$. It is plain that the identity map k: $(X, \tau) \rightarrow (X, \tau)$ is contra - $(\tau^* - G, g)$ -closed map.

Proposition (3-12):

- (i) Every contra -(τ^* -G, g) closed map is contra τ^* -G closed.
- (ii) Every contra $-(\tau^*-G, g)$ -closed map is contra g-closed.

Proof (i):-

Let k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ be contra- (τ^*-G, g) - closed map and W is a closed in X, since [all closed set is τ^*-g – closed], then W is τ^*-g - closed set in X Thus, k(W) is g-open set in \dot{Y} . Also, since [all closed set is g – open set is τ^*-g -open]. Hence, k(W) is τ^*-g -open set in \dot{Y} . Therefore, k is contra τ^* -G-closed map.

Some way we proof step-ii-.

Is not true the converse of the proposition (3-12), the next examples to show that:

Example (3-13):- Let $X = \dot{Y} = \{\ell, v, \vartheta\}$ with the topologies $\tau = \{X, \phi, \{\ell\}, \{v, \vartheta\}\}$ and $\sigma = \{\dot{Y}, \phi, \{\ell\}\}$.Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ such that $k(\ell) = \ell$, k(v) = v and $k(\vartheta) = \vartheta$. It is plain that a map k is a contra τ^* -G – closed, but k is not contra- $(\tau^*$ -G, g)- closed since for τ^* -g - closed set $W = \{v, \vartheta\}$ in X, $k(W) = k(\{v, \vartheta\}) = \{v, \vartheta\}$ is not g-open set in \dot{Y} .

Example (3-14):- Let $X=\dot{Y}=\{\ell, v, \ell\}$ with the topologies $\tau =\{X, \phi, \{\ell\}\}$ and $\sigma =\{\dot{Y}, \phi, \{\ell\}, \{v\}, \{\ell, v\}\}$.Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ such that $k(\ell) = \ell$, $k(v) = \ell$ and $k(\ell) = v$. It is plain that a map k is a contra g - closed, but k is not contra- (τ^*-G, g) -closed since for τ^*-g - closed set $W=\{\ell\}$ in X, $k(W)=k(\{\ell\})=\{\ell\}$ is not g-open set in \dot{Y} .

Remark(3-15):

The concepts of contra closed maps and contra - $(\tau^* - G, g)$ - closed maps are independents. As seen in examples down.

Example (3-16): Let $X = \dot{Y} = \{\ell, v, \vartheta\}$ with the topologies $\tau = \{X, \phi, \{\vartheta\}, \{v, \vartheta\}\}$ and $\sigma = \{\dot{Y}, \phi, \{\ell\}\}$.Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ is define by $k(\ell) = \ell$, $k(v) = \vartheta$ and $k(\vartheta) = v$. It is plain that k is contra- (τ^*-G, g) - closed map, but k is not contra closed since for closed set $W = \{\ell, v\}$ in X, $k(W) = k(\{\ell, v\}) = \{\ell, \vartheta\}$ is not open in \dot{Y} .

Example (3-17):- Let $X = \dot{Y} = \{\ell, v, b\}$ with the topologies $\tau = \{X, \phi, \{\ell\}, \{\ell, b\}\}$ and $\sigma = \{\dot{Y}, \phi, \{v\}, \{v, b\}\}$.Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ such that $k(\ell) = \ell$, k(v) = vand k(b) = b. It is plain that a map k is a contra closed, but k is not contra- (τ^*-G, g) closed since for τ^*-g - closed set W= $\{\ell, v\}$ in X, $k(W) = k(\{\ell, v\}) = \{\ell, v\}$ is not open set in \dot{Y} . The condition that make proposition(3-12) and Remark(3-15) are true, will be present in the next propositions .

Proposition (3-18):

If Let $k: (X,\tau) \rightarrow (\dot{Y}, \sigma)$ is contra τ^* - G- closed map, X is τ^* -T_{1/2}- space and \dot{Y} is τ^* -T_g- space, then k is contra-(τ^* - G, g) – closed map.

Proof : Let W be τ^* -g - closed set in X. Since X is τ^* -T_{1/2}- space, thus W is a closed set in X. Also, since k is contra τ^* -G - closed map. Thus k(W) is τ^* -g - open set in \dot{Y} . Also, by hypotheses \dot{Y} is τ^* -T_g- space then k(W) is an g-open set in \dot{Y} . Hence k contra-(τ^* -G, g) – closed.

Same way, we show the next proposition:

Proposition (3-19): If k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ is contra closed (resp. g-closed) map and X is τ^* -T_{1/2}- space. then k is contra- $(\tau^* - G, g)$ – closed map.

Proposition (3-20): If k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ is contra- $(\tau^* - G, g)$ – closed map and \dot{Y} is $T_{\frac{1}{2}}$ - space, then k is contra closed.

Now, we give another types of contra- τ^* -G - closed map is called contra- τ^* -G* - closed map.

Definition (3-21):

A map k: $X \to \dot{Y}$ is said to be **contra** τ^* -**G*** –**closed** if for all τ^* -g -closed set W of X, then k(W) is open set of \dot{Y} .

Example(3-22): Let $X = \dot{Y} = \{ \ell, v, \ell \}$, $\tau = \{X, \phi, \{v, \ell\}\}$ and $\sigma = \{ \dot{Y}, \phi, \{\ell\}\}, \{v\}, \{\ell, v\}, \{\ell, \ell\}\}$. Let k: $(X, \tau) \rightarrow (\dot{Y}, \sigma)$ define by $k(\ell) = \ell$, k(v) = v and $k(\ell) = \ell$. It observe k is a contra τ^* -G* – closed.

Proposition (3-23): If k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ is contra τ^* -G* – closed map, then k is

- (i) Contra closed map.
- (ii) Contra g-closed map.
- (iii) Contra τ^* -G closed map.
- (iv) Contra - $(\tau^*$ G, g) closed map.

Proof (i): W is a closed set in X. Since [all closed set is τ^* -g-closed), then W is τ^* -g-closed set in X. Thus k(W) is an open set in \dot{Y} . Hence k is contra closed map.

Some way we proof step-ii- ,-iii- and -iv-.

The proposition (3-23) converse is not true, the next examples to show that:

Example (3-24): Let $X = \dot{Y} = \{\ell, v, \ell\}$ with the topologies $\tau = \{X, \phi, \{\ell, v\}\}$ and $\sigma = \{\dot{Y}, \phi, \{\ell\}\}$. Let $k: (X, \tau) \rightarrow (\dot{Y}, \sigma)$ is define by $k(\ell) = v$, $k(v) = \ell$ and $k(\ell) = \ell$. It is plain that a map k is a contra closed, but k is not contra- τ^* -G*- closed since for τ^* -g - closed set $W = \{\ell, \ell\}$ in X, $k(W) = k(\{\ell, \ell\}) = \{\ell, \ell\}$ is not open in \dot{Y} .

Example (3-25):

Let $X = \dot{Y} = \{\ell, v, \ell\}$ with the topologies $\tau = \{X, \phi, \{v, \ell\}\}$ and $\sigma = \{\dot{Y}, \phi, \{v\}, \{\ell, \ell\}\}$. Let $k: (X, \tau) \rightarrow (\dot{Y}, \sigma)$ such that $k(\ell) = \ell$, k(v) = v and $k(\ell) = \ell$. It is plain that k is a contra g- closed (resp. contra τ^* -G- closed) map, but k is not contra- τ^* -G*- closed map since for τ^* -g - closed set $W = \{\ell, v\}$ in X, $k(W) = k(\{\ell, v\}) = \{\ell, v\}$ is not open set in \dot{Y} .

The condition that make proposition(3-23) true, will be present in the next propositions.

Proposition (3-26): A map k: $(X,\tau) \rightarrow (\dot{Y}, \sigma)$ is contra τ^* - G*- closed map if k is

- (i) Contra closed and X is τ^* -T_{1/2}- space.
- (ii) Contra g- closed and X is τ^* -T_{1/2}- space and \dot{Y} is T_{1/2}- space.
- (iii) Contra τ^* G- closed map if X, \dot{Y} are τ^* -T_{1/2}- spaces.
- (iv) Contra-(τ^* G, g) closed map and \dot{Y} is $T_{1/2}$ space.

Proof (i):

Let W be τ^* -g - closed set in X, since X is τ^* -T_{1/2}- space so we get, W is a closed set in X. Also, since k is contra closed map Thus, k(W) is an open set in \dot{Y} . Therefore, k is contra τ^* - G*- closed.

The proof of steps -ii- ,-iii- and -iv- similar to step-i- .

In the following , will be give some proposition about the composition of these types of contra τ^* -G- closed maps .

Proposition (3-27): Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ be closed map and g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be contra τ^* - G- closed map. Then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G- closed.

Proof:

Let W be a closed set in X. since k is a closed map .Thus k(W) is closed set in Ý. Also, since g is contra τ^* - G- closed map, then g(k(W)) = gok(W) is τ^* -g- open set in Z. Therefore, gok: $(X,\tau) \rightarrow (Z,\mu)$ is a contra τ^* - G- closed.

Similarly, we proof the following corollary.

Corollary(3-28):

Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ and g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be and \dot{Y} maps . Then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G- closed if k is closed map and

- (i) g is contra closed map.
- (ii) g is contra- $(\tau^* G, g)$ closed map.
- (iii) g is contra τ^* G*- closed map.

Proposition (3-29):

Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ be closed map, g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be contra closed and X is τ^* -T_{1/2}- space, then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed map.

Proof:

Let W is a τ^* -g-closed set in X. Since X is τ^* - $T_{1/2}$ - space, then W is a closed set in X also ,since k is closed map, then k(W) is a closed set in \dot{Y} . since g is contra closed map Thus, g(k(W)) = gok(W) is an open set in Z. Therefore, $gok: (X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed.

Same way, we show the next proposition

Proposition (3-30):

- (1) If k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ is closed map, g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ is contra closed and X is τ^* -T_{1/2}- space, then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* G* closed map.
- (2) If k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ is g- closed map, g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be contra τ^* G*- closed and X is τ^* -T_{1/2}- space, then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* G*- closed map.

(3) If k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ is closed map, g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ is contra g- closed ,and X is $\tau^* - T_{1/2}$ - space, then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra $(\tau^* - G^*,g)$ - closed map.

Proposition (3-31):

Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ be contra closed map and g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be open map then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G- closed map.

Proof: Let W be a closed set in X ,since k is contra closed map , then k(W) is an open set in \dot{Y} . Also , since g is open map . Thus , g(k(W)) = gok(W) is an open set in Z and [all pen set is τ^* - g- open] . Hence , gok(W) is τ^* - g- open set in Z .Therefore , $gok: (X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed.

Proposition (3-32):

Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ be contra τ^* - G*- closed map and g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be open map then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed map.

Proof:

Let W be a τ^* - g-closed set in X, since k is contra τ^* - G*-closed map, then k(W) is an open set in \dot{Y} . Also, since g is open map. Thus, g(k(W)) = gok(W) is an open set in Z and .Therefore, gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed.

Proposition (3-33):

Let k: $(X,\tau) \rightarrow (\dot{Y},\sigma)$ be contra $(\tau^* - G,g)$ - closed map, g: $(\dot{Y},\sigma) \rightarrow (Z,\mu)$ be open map and \dot{Y} is $T_{1/2}$ - space ,then gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* - G*- closed map.

Proof :

Let W be a τ^* -g-closed set in X, since k is contra (τ^* -G,g)-closed map, then k(W) is g-open set in \dot{Y} , by hypotheses \dot{Y} is $T_{1/2}$ - space, then by Definition(2-5) we get k(W) is an open set in \dot{Y} , Also, since g is open map. Thus, g(k(W)) = gok(W) is an open set in Z and .Therefore, gok: $(X,\tau) \rightarrow (Z,\mu)$ is contra τ^* -G*- closed.

References:

[1] Baker. C.W; "Contra- open function and contra- closed functions", Math. Today, 15(1997) .19-24.

[2] Balasubramanian .S. ," Almost contra vg-open and almost contra vg-closed mappings ", International Journal of Advanced Scientific and Techical Research.Issue 2, Vol(2), 2015, 78-92.

[3] Biswas .N.," On some mapping in topological spaces ", Bull .Call .Math .Soc,61(1969), 127-135.

- [4] Dunham, W., "A New Closure Operator For Non-T-Topologies", Kyungpoof Math. J. 22 (1982) 55-60.
- [5] Eswaran ,S and Nagaveni .N," τ^{*}-Generalized homeomorphism in Topological Spaces ", International J. of Computer Applications ,Vol(40) , No.1 , 2012 , 38-42
- [6] Eswaran,S. and Pushpalatha, A. "τ^{*}-Generalized Continuous Maps in Topological Spaces", International J. of Math. Sci. and Eng. Appls. (IJMSEA) ISSN 0973-9424, Vol. 3, No. IV, (2009), pp. 67-76.
- [7] Jamhour, M. E., "On G-Closed Mappings", M.Sc. Thesis, Al-Mustansirya University, 2002.
- [8] Levien, N., "Generalized Closed Set in Topology", Rend. Circ. Math. Palermo (2) 19, (1970), 89-96.
- [9] Malgham, S. R., "Generalized Closed Maps", J. Karnatak Univo 27, (1982), 82-88.
- [10] Pushpalatha, A.; Eswaran, S. and Rajarubi, P., "τ*-Generalized Closed Sets in Topological Spaces", Proceeding of World Congress on Engineering (2009), Vol. (11), W(K), 2009, July 1-3, London, U.K., 1115-1117.