

Some Results of The Cyclic Decomposition of The Rational Valued Character Table of Some Finite Groups

By

Dunya Mohamed Hameed

Department of Mathematics-- College of Education-- Mustansiriyah University , Baghdad -- Iraq

dunya_mahamed@uomustansiriyah..edu.iq

Abstract:

The destination of this labor's is to present and study the cyclic decomposition of the rational-valued character schedule matrix of some finite groups which are (Z_{st} , Z_{str} , $Z \times C_2$ and $Z_{str} \times C_2$),where s > t > r > 2 are distinct prime numbers.

Keywords:-

Finite groups Z_n , cyclic decomposition, character tables of finite groups.

1. Introduction:

Many researchers such as Hussein . H . A [2] , Mohamed . S .K [5] , Rajaa . H .A[7] and Shabani . H , Ashrafi .A . R and Ghorbani . M [8], they have presented and studied the topic of the rational.. character table and the cyclic decomposition of some finite groups . Paper goal is to present the cyclic decomposition of the rational.. valued character matrix table of finite groups Z_{st} and Z_{str} of order st and str respectively, where s > t > r are distinct prime numbers.

Also, we introduce the rational.. valued character schedule matrix and cyclic decomposition of the groups ($Z_{st} \times C_2$) and ($Z_{str} \times C_2$), by using row and column operations to determine the diagonal matrix of these rational-valued character table matrices .

2-Preliminaries:-

Some notions and theories that we need in this paper, we will introduce in this section.

Definition (2-1),[4]:

The character whose elements belong to Z such that $Q(t) \in Z$, $\forall t \in \mathcal{K}$ is called the rational valued character Q of \mathcal{K} .

Definition(2-3),[5]:

Let $\mathcal K$ be finite group . Then $u \times u$ matrix, where the columns represent Γ -classes and its rows represent elements of each rational values characters of $\mathcal K$ is called the rational.. valued characters table of $\mathcal K$ and is symbolizes it by $\equiv^* (\mathcal K)$ or $QCT(\mathcal K)$.

Definition (2-4), [3]:-

If a matrix $\mathcal N$ whose elements in $\mathcal R$, where $\mathcal R$ principal integral domain is identical to matrix $\mathcal D=$ Diag{ $\mathbf s_1$, $\mathbf s_2$,, $\mathbf s_t$, 0,0,, 0} such that $\mathbf s_j$ / s_{j+1} for $1\leq j\leq t$, then $\mathcal D$ is called **the invariant factor matrix** of $\mathcal N$ and $\mathbf s_1$, $\mathbf s_2$,, $\mathbf s_t$ the invariant factor of $\mathcal N$.

Theorem (2-5),[6]:

If \mathcal{R} is principal domain and T, Q are non-singular matrices of degree ℓ and j respectively over \mathcal{R} . Then $\mathcal{D}(T \otimes Q) = \mathcal{D}(T) \otimes \mathcal{D}(Q)$. Where $\mathcal{D}(T)$ and $\mathcal{D}(Q)$ are matrices of invariant factor of T and Q respectively.

Remark(2-6),[6]:

$$OCT(C_2) = (\equiv^*(C_2)) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Theorem(2-7),[6]:

If q is a prime number, then $\mathcal{D}(\equiv^*(C_{q^k})) = \text{Diag}\{q^k \text{ , } q^{k-1} \text{ , } \cdots \cdots \text{, } q, 1\}.$

Theorem(2-8),[2]:

If \mathcal{K}_1 , \mathcal{K}_2 are two groups of the orders ℓ_1 , ℓ_2 respectively where g.c. $d(\ell_1,\ell_2)=1$, for any $\chi \in Irr(\mathcal{K}_1)$ and $\psi \in Irr(\mathcal{K}_2)$ such that g. c. $d(m(\chi), \psi(1) \mathbb{Q}(\psi): \mathbb{Q} \mid)=g$. c. $d(m\psi), \chi(1) \mathbb{Q}(\chi): \mathbb{Q} \mid)=1$, then $\equiv^* (\mathcal{K}_1 \times \mathcal{K}_2) = (\equiv^* (\mathcal{K}_1)) \otimes (\equiv^* (\mathcal{K}_2))$.

Theorem (2-9),[2]:

(i) If s and t are two prime numbers such that s > t, then $(\equiv^*(Z_{st})) =$

$QCT(Z_{st})$	\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_3	\mathcal{H}_4
\wp_1	1	1	1	1
\wp_2	t-1	-1	t-1	-1
\wp_3	s-1	s-1	-1	-1
\wp_4	α	1-s	1-t	1

Where , $\alpha = \text{st-s-t-1}$, $\mathcal{H}_1 = \{\text{id}\}$, $\mathcal{H}_2 = \{\text{ s , 2s,.....,(t-1)s}\}$, $\mathcal{H}_3 = \{\text{t ,2t,....,(s-1)t}\}$, $\mathcal{H}_4 = \{a \in Z_{st} : (a, \text{st}) = 1\}$ are the rational conjugacy classes .

(ii) If s, r and t are distinct prime numbers such that s > t > r, then $(\equiv^*(Z_{str})) =$

$QCT(Z_{str})$	\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_3	\mathcal{H}_4	\mathcal{H}_5	\mathcal{H}_6	\mathcal{H}_7	\mathcal{H}_8
\wp_1	1	1	1	1	1	1	1	1
\wp_2	r–1	-1	r-1	-1	r-1	-1	r-1	-1
\wp_3	t-1	t–1	-1	-1	t-1	t-1	-1	-1
\wp_4	α_1	1-t	1-r	1	α_1	1-t	1-r	1
\wp_5	s-1	s-1	s-1	s-1	-1	-1	-1	-1
\wp_6	α_2	1-s	α_2	1-s	1-r	1	1-r	1
\wp_7	α_3	α_3	1- s	1-s	1-t	1-t	1	1
₽8	α_4	-α ₃	-α ₂	s-1	-α ₁	t-1	r-1	-1

Where , $\alpha_1 = (t-1)(r-1)$, $\alpha_2 = (s-1)(r-1)$, $\alpha_3 = (s-1)(t-1)$, $\alpha_4 = (s-1)(t-1)(r-1)$ and, the rational conjugacy classes are: $\mathcal{H}_1 = \{id\}$, $\mathcal{H}_2 = \{st$, 2st ,..., $(r-1)st\}$, $\mathcal{H}_3 = \{sr$, 2sr ,..., $(t-1)sr\}$, $\mathcal{H}_4 = \{tr, 2tr$,..., $(s-1)tr\}$, $\mathcal{H}_5 = \{s, 2s$,..., $(r-1)(t-1)s\}$, $\mathcal{H}_6 = \{t, 2t$, ..., $(r-1)(s-1)t\}$, $\mathcal{H}_7 = \{r$, 2r ,..., $(t-1)(s-1)r\}$ and $\mathcal{H}_8 = \{a \in Z_{str} : (a, str) = 1\}$.

3.The Cyclic Decomposition of The Rational Valued Character Table of Some Finite Groups:

In this section ,we will introduce some results about finding the cyclic. decomposition of the $D(\equiv^*(Z_{st}))$, $D(\equiv^*(Z_{str}))$, $D(\equiv^*(Z_{str} \times C_2))$, where s > t > r > 2 are distinct prime numbers.

Theorem(3-1):

Let $\mathcal{K} = Z_{st}$ such that $|Z_{st}| = st$, where s > t are distinct prime numbers, then the cyclic decomposition of the $\equiv^*(Z_{st})$ is $K(\equiv^*(Z_{st})) = Z_{st} \oplus Z_s \oplus Z_t \oplus Z$

Proof:

By theorem(2-9) we conclusion that $\equiv^*(Z_{st})$ is

$$\equiv^*(Z_{st}) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ t-1 & -1 & t-1 & -1 \\ s-1 & s-1 & -1 & -1 \\ \alpha & 1-s & 1-t & 1 \end{bmatrix} \text{, where } \alpha = st-s-t+1$$

And, by using elementary rows and columns operations, we have the following

the diagonal matrix :
$$\begin{bmatrix} st & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

Thus , cyclic decomposition of $(\equiv^*(Z_{st}))$ is $K(\equiv^*(Z_{st})) = Z_{st} \oplus Z_s \oplus Z_t \oplus Z$

In the same way the theory below is proven

Theorem(3-2):

If $\mathcal{K} = \mathsf{Z}_{str}$ is a finite group of order str , where s > t > r are distinct prime numbers, then the cyclic decomposition of the $\equiv^*(\mathsf{Z}_{str})$ is $\mathsf{K}(\equiv^*(\mathsf{Z}_{str})) = \mathsf{Z}_{str} \oplus \mathsf{Z}_{st}$ $\oplus \mathsf{Z}_{sr} \oplus \mathsf{Z}_{t} \oplus \mathsf{Z}_{t} \oplus \mathsf{Z}_{t} \oplus \mathsf{Z}_{t} \oplus \mathsf{Z}_{t}$.

Theorem (3-3):

Let $\mathcal{K} = \mathsf{Z}_{\mathsf{st}}$ such that $|\mathsf{Z}_{\mathsf{st}}| = \mathsf{st}$, where $\mathsf{s} > t > 2$ are distinct prime, then the rational character table of $(\mathsf{Z}_{\mathsf{st}} \times \mathsf{C}_2)$ is $\equiv^* (\mathsf{Z}_{\mathsf{st}} \times \mathsf{C}_2) = (\equiv^* (\mathsf{Z}_{\mathsf{st}})) \otimes (\equiv^* (\mathsf{C}_2))$

Proof:

It is easy to see g. c. d ($|Z_{st}| \times |C_2|$)=g. c. d (st ,2)=1, so by theorem(2-8) we get:

$$\equiv^* (\mathsf{Z}_{\mathsf{st}} \times \mathsf{C}_2) = (\equiv^* (\mathsf{Z}_{\mathsf{st}})) \otimes (\equiv^* (\mathsf{C}_2)) \ .$$

Where,
$$(\equiv^*(Z_{st})) \otimes (\equiv^*(C_2)) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ t-1 & -1 & t-1 & -1 \\ s-1 & s-1 & -1 & -1 \\ \alpha & 1-s & 1-t & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Theorem(3-4):

Let $\mathcal{K}=\mathsf{Z}_{\mathrm{str}}$ such that $|\mathsf{Z}_{\mathrm{str}}|=\mathrm{str}$, where $\mathrm{s}>t>r>2$ are distinct prime numbers, then $\equiv^*(\mathsf{Z}_{\mathrm{str}}\times\mathsf{C}_2)=(\equiv^*(\mathsf{Z}_{\mathrm{str}}))\otimes(\equiv^*(\mathsf{C}_2))$.

Proof:

It is clearly that g. c. d ($|Z_{str}| \times |C_2|$)=g. c. d (str ,2)=1 and by theorem(2-8) we conclusion that :

$$\equiv^* (Z_{\rm str} \times C_2) = (\equiv^* (Z_{\rm str})) \otimes (\equiv^* (C_2)).$$

Where,
$$\equiv^* (Z_{\text{str}} \times C_2) = (\equiv^* (Z_{\text{str}})) \otimes (\equiv^* (C_2))$$

Where, $\alpha_1 = (t-1)(r-1)$, $\alpha_2 = (s-1)(r-1)$, $\alpha_3 = (s-1)(t-1)$, $\alpha_4 = (s-1)(t-1)(r-1)$.

Theorem (3-7):

If $\mathcal{K} = Z_{st}$ is group of order st , where s > t > 2 are distinct prime numbers , then $K(\equiv^*(Z_{st} \times C_2)) = K(\equiv^*(Z_{st})) \otimes K(\equiv^*(C_2))$.

Proof: From Theorem(3-1) \Rightarrow D(\equiv *(Z_{st}))= Diag {st, s, t,1}, and

Theorem(2-7) \Rightarrow D(\equiv *(C₂))=Diag{2,1}.

So, by using Theorem (3-4) and Theorem (2-5) we get:

$$D(\equiv^*(Z_{pq} \times C_2)) = D(\equiv^*(Z_{st})) \otimes D(\equiv^*(C_2)) = Diag\{st, s, t, 1\} \otimes Diag\{2, 1\} =$$

 $Diag{2st, 2s, 2t, 2, st, s, t, 1}$.

Theorem(3-8): If $\mathcal{K} = \mathsf{Z}_{str}$ is group of order str, where s > t > r > 2 are distinct prime numbers, then $\mathsf{D}(\equiv^*(\mathsf{Z}_{str} \times \mathsf{C}_2)) = \mathsf{D}((\equiv^*(\mathsf{Z}_{str})) \otimes \mathsf{D}((\equiv^*(\mathsf{C}_2))$.

Proof:

By Theorem(3-2)
$$\Rightarrow$$
D(\equiv *(Z_{str}))= Diag{ str, st, sr,s,tr,t,r,1}, and by

Theorem(2-7) \Rightarrow D(\equiv *(C₂))=Diag{2,1}.

Therefore, by Theorem (3-5) and Theorem (2-5) we obtain:

$$D(\equiv^*(Z_{str} \times C_2)) = D(\equiv^*(Z_{str})) \otimes D(\equiv^*(C_2)) = Diag\{str, st, sr, s, tr, t, r, 1\} \otimes D(\equiv^*(Z_{str} \times C_2)) = D(\equiv^*(Z_$$

 $Diag\{2,1\} = Diag\{2str, 2st, 2sr, 2s, 2tr, 2t, 2r, 2, str, st, sr, s, tr, t, r, 1\}$.

References:

- 1- Hall, M. J, "The Theory of Groups", Macmillan New York, 1959.
- **2-** Hussein .H . A ," The Cyclic Decomposition of The Factor Group $cf(D_{nh} \times C_2, \mathbb{Z})/R(D_{nh} \times C_2)$ when n is an odd Number " , Journal of Basrah Researches (Sciences . Volume .37 , No.4 .2011 .
- $\mbox{\bf 3-}$ Isaacs . I . M ; " On Character Theory of Finite Groups "; Academic Press., New York , 1976 .
- **4-** James .G and Liebeck . M ;" Representation and Characters of Groups", Cambridge .Univ .Press .London , New York , 1993 .

- **5-** Mohamed .S.K;" The Factor of the Z-Valued Class Function Module the Group of the Generalized Characters ", Ph.D. Thesis .University of Birmingham , 1982 .
- **6-** Naseer . R .M and Naba .H .J ," The Rational Valued Characters Table of the Group $Q_{2p} \times D_4$ when p is a Prime Number " , Journal of Kufa for Mathematics and Computer . Volume .3 , No .2 . 2016 .
- **7-** Rajaa .H .A , " On The Valued Characters Table of the Group $Q_{2m} \times C_4$ when M is a Even Number " , Applied Mathematical Sciences . Volume .11 , No .39 . 2017 .
- $\mbox{\bf 8-}$ Shabani . H , Ashrafi .A . R and Ghorbani . M ;" Rational Character Table of Some Finite Groups "; Journal of Algebra System , Vol.3 , No.2 , 2016 .
- **9-** Sekigvchi . K ,"Extension and Irreducibility of the induced character of cyclic p-subgroups ",Hiroshima Man ,Journal,2002.

IEEESEM