
SEVERAL WORKS ON EXISTING 

DISTRIBUTIONS  

Abstract: The graphs of density function have inspired to take many extensions of it. This paper 

is the stem from the attracting characteristics of the distribution. This paper studies some 

more theoretical properties of the density curves.  
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Introduction This paper is continuous work to the previous ones [2], [18] which are briefed 

here. The Random variable of interest is to “Stay only n number arrivals in the system in a 

particular time interval”. The arrivals to system stay in the system while during the queue, 

acquiring the service and while probing for some data in the system. Instead of asking “how 

many arrivals take place in a particular time interval (Poisson)”, we ask for “how likely the 

system to have n number of arrivals in particular time interval”. Since X is continuous, the PDF 

should be a function. We had made some inferences about this unknown function. This means 

the probability distribution that takes into account of measurements those we have surveyed 

for a considerable period of time. So the output of the inference problem is the distributions of 

X. We charted the histograms for different number of arrivals staying in the system from which 

we found the density curves.  

In which case its probability density function is given by 
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Probability of staying 
2 arrivals is more in 
this neighbourhood

Probability of staying 
1 arrivals is more in 
this neighbourhood

Probability of staying 
3 arrivals is more in 
this neighbourhood

Probability of staying 
4 arrivals is more in 
this neighbourhood  

                              FIGURE - 2 

 

By observing the density function graph, we would note that each series peaks at particular 

point and then starts to descend.  That is each series had peak point in particular time interval.  

A short survey conducted in a bank queuing system to get the customer arrival rate.  

It is observed that an average of 3 customers arriving for every 100 seconds to a particular 

bank.  i.e.   = 0.03 cm/sec 

For n = 1  

First curve got its peak point at t =
n


 = 

1


= 33 seconds that is in the neighborhood of 

1


, the 

curve gets its highest position.  We had taken this 
1


= 33 seconds. 

For n = 2  
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Consider 
1 1

2n or n
 

   
    

   
 

   33 1 33 2n or n   

In particular we take n(33) +1 or n(33) +2 

2(33)+1 or  2(33)+2 

        67  or 68 

The 2nd curve got its peak point in the neighborhood of 
1

n


 
 
 

=66 seconds, probably at 67 

seconds. 

For n = 3:  

Consider  

1 1
1 2n or n

 

   
    

   
 

   3 33 1 3 33 2or   

In Particular    3 33 1 3 33 2or   

100            or          101  

The third curve (n = 3) got its peak point in the neighborhood of  3 33 99
n


  seconds 

probably at 100 seconds the curve attained its highest position.  

For n = 4  

Consider 
1 1

1 2n or n
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   4 33 1 4 33 2or   

In particular 4(33) +1 or 4 (33) +2 

133 or 134 

The 4th curve got its peak in the neighborhood of 
4

4(33) 132
n

 
    seconds.  

Probably at 133 seconds curve attained its highest position. 

In most of the cases the curves attains its highest position in the neighborhood of 
n


 and that 

too probably at 
n


+1. 

The above calculation generalized and indicated by the formula.  

For n = 1: 

The curve peaks in the neighborhood of
n


, most probably at 

n


+1 only.  

For n > 2:  

These curves are attaining their highest in the neighborhood of 
n


 and most probably at 

n


+1 

The theoretical proof for the above calculations:  

From the above calculations for 2n  the curves are attaining their highest position at some 

neighborhood of  
n


, and most probably at  

n


+1 

We prove this by assuming contradiction.  
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If possible, let us suppose this point is not highest point. i.e. Probability mass accumulated 

under that point is not more. So the curve is getting peak point at some time t. After that curve 

is coming down and runs parallel to x-axis at the end.  
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Case 1:   When t = 0 

    0
nn

e n



 

   

This is absurd because  

(1)  Exponential gives a positive value.  

(2)  is intensity factor(arrival rate)>0 

(3) 2n   

 L.H.S cannot be less than 0 

1
n

f


 
  

 
is not less than f(t) 

Case 2: When 1
n

t


   

     
n nn te n e t
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multiplied b y  
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n   cannot be less than    
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  with 1
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Case 3:  When 1
n

t


   

     
n nn te n e t

  
     

Due to exponentials on both sides, L.H.S. cannot be less than R.H.S. with  

   t > 1
n


  

1
n

f


 
  

 
 Is not less than f(t) with 1

n
t


   

In all cases 1
n

f


 
  

 
 is not less than f(t).  

We get in the neighborhood of 
n


  the maximum point of f(x). 

In most of the cases probably at t = 1
n


 Curves are attaining their highest. 

CONCLUSION  

By using the graph of the density function this paper studied some theoretical properties of the 

density function curves. Using density graphs we developed the relation or the neighborhood of 

time where curves attain its maximum position in this graph. And the most interesting 

application is neighborhood of 
n


  the maximum point of f(x) in this graph. In most of the cases 

in this probably at t = 1
n


 curves are attaining their highest. 
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