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Abstract: 

A multiplexer (switching device) is the most frequently used combinational circuit and it is an important building 

block in many digital systems which is commonly used in our day-to-day life in landline telephone networks and the 

Cable TV. Artificial Neural Network emulated multiplexers (neuronal multiplexers) are neural network model that 

mimics the way a human brain works by selecting the best conditions in the input signals of a physical multiplexers, 

train neurons to behave exactly like multiplexers. It is made up of a number of nodes that are organized in several 

layers that must follow the artificial neural network routing algorithm. The training of the neurons will base on the 

back propagation algorithm with several training parameters that will be presented to the neurons. The input layers of 

neurons feeds the input variables into the network through the hidden layers or processing elements which send the 

processed signal to the output layers. This can be implemented on a real television cable  network with billions of 

nodes[ neural netwok input nodes]. If this is achieved, we will experience a more reliable television cable  networks 

on reliable secured protocols. This network will be more efficienct than the conventional network. There will not be 

signal lost on the network because of various signal routes of the same class of nodes. Network breakdown might be 

impossible with this because any breakdown on the network presents the next possible route on the same 

network[artificial intelligent learning]

 

Key Words: neuronal multiplexers, multiplexers, artificial neural networks, back propagation 

algorithm 

 

I. Introduction  

In order to explore the historical background of artificial neural network it is necessary to 

understand the origins and historical advancements of both logic devices and Artificial Neural 

Network. Gottfried Wilhelm Leibniz enhanced the binary number system, which he published in 

1705, drawing inspiration from the binary system found in the ancient I Ching (Nylan, 

2001)(Perkins, 2004). Leibniz recognized that employing the binary system allowed for the 

integration of both arithmetic and logical principles. 

Between 1934 and 1936, Akira Nakashima, an engineer from NEC, along with Claude Shannon 

and Victor Shestakov, independently introduced the concept of switching circuit theory through a 

series of papers they demonstrated that two-valued Boolean algebra could effectively describe the 

functioning of switching circuits (Stanković & Astola, 2008). This discovery laid the groundwork 

for utilizing electrical switches to implement logical operations, forming the fundamental principle 

that underlies all electronic digital computers. The introduction of switching circuit theory 
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revolutionized digital circuit design, gaining widespread recognition among the electrical 

engineering community during and after World War II. Theoretical rigor replaced the previously 

prevalent ad hoc methods, solidifying the importance of this new approach (Stanković & Astola, 

2008). 

Bell Labs engineers Mohamed M. Atalla and Dawon Kahng showcased metal-oxide-

semiconductor (MOS) devices, specifically PMOS and NMOS, in 1960(Lojek, 2007) 

Subsequently, these two types of MOS devices were merged and transformed into complementary 

MOS (CMOS) logic by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963 

(Wanlass & Sah, 2021). 

II. HISTORICAL BACKGROUND OF ARTIFICIAL NEURAL NETWORK 

The most basic type of feed forward neural network is a linear network, consisting of a single layer 

of output nodes. Inputs are directly connected to outputs through weighted connections, and the 

node's output is calculated by summing the products of the weights and inputs. The weights are 

adjusted to minimize the mean squared errors between the calculated outputs and the target values, 

a technique known as the method of least squares or linear regression. This method has been used 

for over two centuries in various applications, such as predicting planetary movement(Baker & 

Kuttler, 2014)(Schmidhuber, 2022). 

In 1925, Wilhelm Lenz and Ernst Ising developed the Ising model, which can be considered a non-

learning artificial recurrent neural network. Shun'ichi Amari later made this architecture adaptive 

in 1972, and it gained popularity through John Hopfield in 1982(Schmidhuber, 2022). 

In 1943, Warren McCulloch and Walter Pitts(Matsumura et al., 2019) proposed a non-learning 

computational model for neural networks. In the late 1940s, D. O. Hebb introduced the learning 

hypothesis known as Hebbian learning, based on neural plasticity. In 1958, Frank Rosenblatt 

invented the perceptron, the first implemented artificial neural network (Haykin, 2008) (Werbos 

& Foundation, 2016), which was funded by the United States Office of Naval Research. However, 

research encountered obstacles when Minsky and Papert discovered the limitations of basic 

perceptrons in processing complex circuits and the lack of computational power for effective 

neural networks(Minsky & Papert, 2019). 

Despite these challenges, methods for training multilayer perceptrons (MLPs) were already known 

at the time of Minsky and Papert's findings. The first deep learning MLP, known as the Group 

Method of Data Handling(Schmidhuber, 2015b), was published by Alexey Grigorevich 

Ivakhnenko and Valentin Lapa in 1965. The first deep learning MLP trained by stochastic gradient 

descent was introduced by Shun'ichi Amari in 1967(Schmidhuber, 2022). Experiments conducted 

with multilayer perceptrons demonstrated the ability to learn useful internal representations for 

classifying non-linearly separable patterns(Schmidhuber, 2022). 

In 1982, Teuvo Kohonen introduced self-organizing maps (SOMs), which are neural networks 

inspired by neurophysiology (Chemic & Received, 2020). SOMs learn low-dimensional 

representations of high-dimensional data while preserving the data's topological structure. They 

employ competitive learning for training (Kohonen, Teuvo; Honkela, n.d.).  

The architecture of convolutional neural networks (CNNs), comprising convolutional layers and 

downsampling layers, was introduced by Kunihiko Fukushima in 1980 and was called the 
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neocognitron. In 1969, Fukushima also introduced the rectified linear unit (ReLU) activation 

function (Schmidhuber, 2022). ReLU has since become the most popular activation function for 

CNNs and deep neural networks in general (Zoph & Le, 2018). CNNs have become essential for 

computer vision tasks. 

The back propagation algorithm, an application of the Leibniz chain rule, was developed in the 

1970s. Seppo Linnainmaa coined the term "back propagation" in 1970, although Frank Rosenblatt 

mentioned the concept earlier in 1962(Schmidhuber, 2022). In 1982, Paul Werbos applied back 

propagation to multilayer perceptrons (MLPs) in a standard manner(Schmidhuber, 2015a). In 

1986, Rumelhart, Hinton, and Williams demonstrated that back propagation could learn 

meaningful internal representations of words when trained for language prediction (Schmidhuber, 

2022). 

In 1987, Alex Waibel introduced the time delay neural network (TDNN), which combined 

convolutions, weight sharing, and back propagation(John Wesley et al., 2020). In 1988, Wei Zhang 

et al. applied back propagation to a CNN for alphabet recognition, and in 1989, Yann LeCun et al. 

trained a CNN to recognize handwritten ZIP codes (VanHook, 2014).  

In the 1990s, back propagation faced challenges with deep feed forward neural networks (FNNs) 

and recurrent neural networks (RNNs). Juergen Schmidhuber proposed a solution in 1992 with a 

hierarchy of RNNs pre-trained using self-supervised learning. This approach enabled learning at 

multiple self-organizing time scales. Schmidhuber also introduced the linear Transformer in 1992, 

an alternative to RNNs(Schmidhuber, 2022), which has become widely used in natural language 

processing and computer vision tasks. 

The modern Transformer model was introduced in 2017 (Vaswani et al., 2017), combining self-

attention mechanisms with softmax operators and projection matrices(Schmidhuber, 2022). 

Transformers have become the model of choice for many language processing tasks and are 

increasingly utilized in computer vision applications. 

In 1991, Juergen Schmidhuber published adversarial neural networks, introducing the concept of 

artificial curiosity. The principle of adversarial learning was later employed in generative 

adversarial networks (GANs) (Mahdizadehaghdam et al., 2019), allowing the creation of realistic 

deep fakes. 

In 1991, Sepp Hochreiter addressed the vanishing gradient problem and proposed recurrent 

residual connections, leading to the development of long short-term memory (LSTM) networks in 

1997. LSTM networks are capable of learning complex tasks(Schmidhuber, 2015b) with long 

credit assignment paths. LSTM has been widely cited and utilized in various applications. Later 

advancements led to the creation of the Highway network and the Residual neural network 

(Srivastava et al., 2015)(He et al., 2016), both achieving significant success in image recognition. 

III. HISTORICAL BACKGROUND OF ARTIFICIAL NEURAL NETWORK 

EMULATION OF LOGIC DEVICES 

The historical progression of replicating logical functions through the use of Artificial Neural 

Networks (ANNs) spans several decades and is characterized by significant milestones and 

valuable contributions.  
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The origins of ANNs can be traced back to the pioneering work of Warren McCulloch and Walter 

Pitts in 1943, when they introduced the McCulloch-Pitts neuron model. This model aimed to 

mimic the behavior of biological neurons by employing logical operations. This foundational 

concept laid the groundwork for subsequent advancements in neural networks(Schmidhuber, 

2022). 

In 1957, Frank Rosenblatt introduced the perceptron, a basic neural model capable of binary 

classification tasks(Schmidhuber, 2022). However, it soon became apparent that single-layer 

perceptrons had limitations when it came to solving complex logical problems, sparking 

discussions about the potential of ANNs in handling logic functions. 

The 1980s marked a significant breakthrough with the development of multilayer perceptrons 

(MLPs) and the introduction of the back propagation algorithm(Schmidhuber, 2022). These 

innovations empowered ANNs to tackle more intricate logic and pattern recognition tasks, 

extending their capabilities beyond simple binary classifications. 

As research progressed, the 1990s witnessed the emergence of neural logic networks (NLNs), 

specifically designed to replicate complex logic operations and functions(Schmidhuber, 2022). 

NLNs represented a pivotal step toward harnessing ANNs for logic emulation. 

In recent years, ANNs and NLNs have found practical applications across various domains. They 

have been leveraged for hardware acceleration, fault-tolerant computing, and the design of digital 

circuits(Schmidhuber, 2022). These applications underscore the growing significance of ANNs in 

addressing the challenges associated with traditional logic devices. 

In conclusion, the historical development of ANNs for emulating logical devices reflects a 

persistent pursuit of more efficient, flexible, and adaptable solutions. From the early days of the 

McCulloch-Pitts neuron to the advanced neural logic networks in use today, this journey has 

significantly influenced the digital technology landscape and continues to drive innovation in 

various fields. 

IV. RELATED LITERATURE 

a. Logic Devices 

A thorough coverage will be shed on the definition, operation, application, evolution and 

challenges of logic devices. It is necessary to explore this facet of knowledge as it is relevant in 

providing a comprehensive understanding on the concept of logic devices which in turn will 

provide a back bone in comprehending its further application in being emulated and the reason for 

such emulation 

Definition and Types of Logic Devices 

A logic gate is an idealized or physical device that performs a Boolean function, a logical operation 

performed on one or more binary inputs that produces a single binary output. In the real world, the 

primary way of building logic gates uses diodes or transistors acting as electronic switches. They 

can also be constructed using vacuum tubes, electromagnetic relays with relay logic, fluidic logic, 

pneumatic logic, optics, molecules, or even mechanical elements. By utilizing amplification; it 

becomes feasible to link logic gates sequentially, akin to the composition of Boolean functions. 

This permits the creation of a tangible representation encompassing the entirety of Boolean logic, 
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and subsequently, the entirety of algorithms and mathematical concepts explicable through 

Boolean logic.  

Types of Logic Devices 

The types of logic gate explored will be limited in scope to those that will be emulated in this 

project. They include: 

i. AND GATE: An AND gate receives ‘A’ and ‘B’, where A and B represent bits and 

produce output denoted by A.B or A∧B.  In the scenario of this logic gate, it produces a 

high output or an output of one (1) only if the two inputs passed is one (1), other cases 

produce a low output or an output of zero (0). In a mathematical context, A.B=1 only if 

A=1 and B=1 else A.B=0. This situation takes the context of a two input AND gate. 

ii. OR GATE: An OR gate receives ‘A’ and ‘B’, where A and B represent bits and produce 

output denoted by A+B or A∨B.  In the scenario of this logic gate, it produces a high output 

or an output of one(1) only if  at least one of the inputs passed is one(1) other cases produces 

a low output or an output of zero(0). In a mathematical context, A+B=1 if either A=1 or 

B=1 else A+B = 0. This situation takes the context of a two input OR gate. 

iii. NOT GATE: A NOT gate (or inverter) receives input A, where A is a bit; and produces 

output. Basically, it produces the opposite of the input passed through it. For example, if 

A=1 then the output produced will be zero (0) and if A = 0 then the output produced will 

be one (1). 

iv. NAND GATE: A NOT-AND gate can be likened to an AND gate succeeded by a NOT 

gate. All the outputs of NAND gates turn high if any of the inputs are low. The symbol for 

this gate resembles an AND gate, but with a small circle placed at the output. This small 

circle denotes inversion. 

v. NOR GATE: A NOT-OR gate can be compared to an OR gate followed by a NOT gate. 

All the outputs of NOR gates become low if any of the inputs are high. The representation 

of this gate involves an OR gate symbol with a small circle positioned at the output. This 

small circle signifies inversion. 

vi. EXCLUSIVE-OR GATE (XOR or EOR or EXOR GATE):The 'Exclusive-OR' gate is 

a circuit that produces a high output when one of its two inputs is high, but not both. An 

encircled plus sign (+) is utilized to represent the Exclusive-OR operation. 

vii. EXCLUSIVE-NOR GATE (XNOR or ENOR or EXNOR GATE):The 'Exclusive-

NOR' gate circuit functions in contrast to the EOR gate. It produces a low output when one 

of its two inputs is high, but not both. The representation of this gate involves an EXOR 

gate symbol with a small circle positioned at the output. This small circle signifies 

inversion. 

viii. 2-TO-1 MULTIPLEXER: Multiplexing is the process of combining one or more signals 

and transmitting on a single channel. The device which is responsible for Multiplexing is 

known as Multiplexer. A 2-to-1 multiplexer consists of two inputs D0 and D1, one select 

input S and one output Y. Depending on the select signal, the output is connected to either 

of the inputs. Since there are two input signals, only two ways are possible to connect the 

inputs to the outputs, so one select is needed to do these operations. If the select line is low, 

then the output will be switched to D0 input, whereas if select line is high, then the output 

will be switched to D1 input. 
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Symbols and Truth Table 

Figure 1: illustration of logic devices, their symbols and truth tables 

 

Symbols and truth table multiplexers 

Table 2.0 showing the truth table of 2-to-1 multiplexer 

 

 

 

 

 

 

 

 

 
Figure 2: illustration of 2-to-1 multiplexer logic circuit 

Applications of Logic Gates 

The utilization of logic gates primarily depends on their truth table, which outlines their operational 

principles (Garg & Kaur, 2019). 

AND GATE  

AND gates find application in amalgamating numerous signals; the output is TRUE only when all 

input signals are TRUE. If any input signal is FALSE, the output becomes FALSE. AND gates are 

not as extensively employed as NAND gates, since NAND gates require fewer components and 

S D0 D1 Y 

0 0 X 0 

0 1 X 1 

1 X 0 0 

1 X 1 1 
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can function as inverters. An instance of an AND gate application is in security alarms. For 

Example 

Figure 3:  illustration of security alarm system using AND gate 

OR GATE  

Whenever the occurrence of any one or more than one event is needed to be detected or some 

actions are to be taken after their occurrence, in all those cases OR gates can be used. For Example 

 

Figure 4: illustration of Doorbell system using OR GATE  

NOT GATE  

NOT gates, recognized as inverters, alter the provided input and display the opposite outcome. The 

benefit of utilizing these inverters is their minimal power consumption and simplified interfacing, 

distinguishing them from alternative logic gates. For Example 

 
Figure 5: illustration of NOT gate based on heating concept 
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NAND GATE 

It can be used for Device Failure Alarm System where if every fan is operational; the NAND gate 

receives an input of 111, leading to an output of 0. If any single fan ceases functioning, the output 

of the NAND gate shifts to 1, triggering the alarm. 

 

Figure 6: illustration of NAND gate based on exhaust fan failure detection system 

NOR GATE  

It can be used for Washing Machine Controller. A Washing Machine employs three sensors to 

monitor the status of its lid, the water level in the tub, and the weight of the laundry and water. If 

the machine's lid is open, the water level in the tub is below a specific threshold, or if the machine 

is overloaded (weight of water and clothes surpasses a certain limit), the respective sensor's output 

is marked as 1. This outcome results in a 0 at the NOR gate's output, which subsequently 

deactivates the machine. 

 

Figure 7:  illustration of NOR gate based Washing Machine Controller  

Multiplexers 

In all types of digital system applications, multiplexers find its immense usage. Since these allow 

multiple inputs to be connected independently to a single output, multiplexers are found in variety 

of applications including: 

Data Routing 

Multiplexers are extensively used in data routing applications to route the data to a one particular 

destination from one of several sources. One of the applications includes the displaying of two 

multidigit BCD counters, one at a time. In such application, 74157 multiplexer ICs are used to 

select and display the content of either of two BCD counters using a set of decoder and LED 

displays. 
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Figure 8: illustration of Multiplexers used in data routing applications 

Challenges and limitations of conventional logic devices 

Traditional logic devices, although integral to computing systems, present a range of issues that 

have prompted researchers to explore innovative alternatives. 

i. Power Consumption: Traditional logic devices, particularly those reliant on power-

intensive technologies like TTL, consume notable energy even during periods of inactivity 

due to static current flow. This results in escalated energy usage and heat generation, 

impacting both energy efficiency and heat management. 

ii. Speed Constraints: As digital systems advance in complexity, signal propagation delays 

through conventional logic gates impose constraints on operational speed. This impedes 

the real-time processing requisites of contemporary applications. 

iii. Size and Integration: Constructing intricate logic circuits through discrete components 

yields unwieldy circuitry, curtailing the potential for integration and miniaturization. This 

is of particular concern in scenarios where spatial limitations are a concern, such as 

portable devices. 

iv. Limited Flexibility: Traditional logic gates possess fixed functions predetermined by 

their design. Adjusting their behavior to evolving requirements demands physical 

modifications, thereby curbing their adaptability. 

Exploring Alternatives: Emulating Neural Networks 

i. Enhanced Power Efficiency: In response, researchers are turning to neural network 

emulation as a means to address power consumption hurdles. Neural networks, with their 

parallel processing and adaptable structure, offer the prospect of reduced energy usage, 

especially when optimized for specific tasks. 

ii. Augmented Processing Speed: By tailoring neural networks for specific tasks, 

researchers aim to potentially achieve swifter processing speeds compared to conventional 

logic gates. This adaptability proves particularly advantageous in scenarios necessitating 

real-time data processing. 

iii. Adaptive Learning Capability: The inherent learning and adaptability of neural networks 

enable them to reconfigure according to shifting conditions. This dynamic quality mitigates 

the limitations of fixed-function logic gates. 

iv. Improved Integration and Size Efficiency: The capacity to integrate neural networks 

within a single chip enhances integration capabilities, thus addressing size constraints. This 

has the potential to optimize spatial utilization in modern electronic systems. 
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The constraints posed by traditional logic devices, spanning power consumption, speed, and size 

challenges, have catalyzed the exploration of innovative avenues such as neural network 

emulation. These pathways offer the potential to surmount the limitations of conventional logic 

devices and open up novel prospects for energy-efficient and adaptive digital systems. 

b. Artificial Neural Network 

Artificial neural networks (ANNs), commonly referred to as neural networks (NNs) or neural nets, 

are computational structures that draw inspiration from the intricate networks of biological neurons 

found in animal brains. 

The term "neural" is often used to refer to a particular category of statistical models that exhibit 

the following characteristics: 

i. Contains sets of adjustable weights, which are numerical parameters adjusted by a learning 

algorithm. 

ii. Is capable of approximating non – linear functions of their inputs 

An ANN is built upon a cluster of interconnected units or nodes known as artificial neurons, which 

serve as a simplified representation of the neurons found in biological brains. Similar to synapses 

in the brain, each connection is capable of transmitting signals to other neurons. When an artificial 

neuron receives signals, it processes them and can transmit signals to the neurons it is connected 

to. The "signal" conveyed through a connection is a real number, and the output of each neuron is 

determined by a non-linear function applied to the sum of its inputs. These connections are referred 

to as edges. Neurons and edges typically possess weights that are adjusted during the learning 

process. These weights either strengthen or weaken the signal's intensity at a connection. 

Additionally, neurons may have a threshold, meaning a signal is only sent if the cumulative signal 

surpasses that particular threshold. 

Usually, neurons are organized into layers, with each layer carrying out distinct transformations 

on the inputs it receives. The signals propagate through these layers, starting from the initial layer 

(known as the input layer) and progressing towards the final layer (known as the output layer), 

potentially passing through the layers multiple times before reaching the output layer. 

A specific neural network model is determined by its topology, learning paradigm and learning 

algorithm. 

 

 

 

 

 

 

 

Figure 9:  Neural Network model (one processing element region) 
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In Figure 9, each circular node symbolizes an artificial neuron, and the arrows indicate connections 

that transmit signals from the output of one artificial neuron to the input of another. 

Artificial Neural Network can be deconstructed into models which will be fully explored. 

These models include: 

i. The Biological model of Artificial Neural Network 

ii. The Mathematical model 

iii. The Artificial Neural Network model 

Biological Model of Artificial Neural Network 

Neurons serve as the elementary computing units in the nervous system. In the human brain, there 

are approximately 10^12 cells with 10^15 interconnections for information processing. Neurons 

are responsible for transmitting information and vary in their physical structure and function. 

Communication between distant neurons in the vertebrate nervous system is achieved through 

encoded pulse streams (Yellamraju et al., 2013). 

Synapses, the junctions between neural cells, facilitate the transmission of impulses. Neurons are 

discrete cells and not connected to other parts of the body. Information flows from the axon to the 

dendrites through the cell body. Each neuron has around 10^3-10^4 synapses. Memories are 

formed by adjusting the connections between neurons, with neurotransmitters playing a vital role 

in synapses. Long-term memories are encoded within the synapses (Yellamraju et al., 2013). 

The input to a neuron comes from the axon of the previous connecting neuron in the form of 

synaptic potentials. When an action potential reaches a presynaptic terminal, it triggers a series of 

events that lead to the release of neurotransmitters, resulting in ionic currents in the postsynaptic 

neuron's membrane. This current causes a change in the membrane voltage, known as the 

postsynaptic potential (PSP) (Yellamraju et al., 2013). 

The dendrites of a neuron receive these synaptic potentials, which influence the action in the cell 

body. If multiple synaptic potentials are applied simultaneously and reach a sufficient threshold, 

their summation can generate an action potential or "spike." In other words, inputs from other 

neurons are summed, and the output is in the form of spikes, occurring only when a specific 

threshold is reached by a sufficient number of inputs (Yellamraju et al., 2013). 

 

Figure 10: Diagram of biological neuron 
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Analogously, in artificial neural networks, there is a crude resemblance to biological neurons. The 

connections between nodes in artificial neurons can be likened to the axons and dendrites in 

biological neurons. The connection weights in artificial neurons represent synapses, while the 

threshold approximates the activity in the soma (cell body) of the receiving neuron. As a result, 

when a certain threshold is reached, the artificial neuron generates a new electrical signal that 

passes through the network (Mohammadhassani et al., 2013). 

Figure 11 illustrates n biological neurons neurons with various signals of intensity x and synaptic 

strength w feeding into a neuron with a threshold of b, and the equivalent artificial neurons system 

(Mohammadhassani et al., 2013).  

 

 

Figure 11:  Signal interaction from n neurons and analogy to signal summing in an artificial neuron 

comprising the single layer perceptron (Mohammad hassani et al., 2013). 

Comparison of biological to artificial neural network 

Table 1: Comparison of biological to artificial neural network 

 

 

 

 

 

 

 

The Mathematical Model 

When modeling an artificial functional model based on a biological neuron, there are three 

essential components that need to be considered. Firstly, the synapses of the biological neuron are 

represented as weights in the model. It is important to note that the synapse in the biological neuron 

refers to the interconnection within the neural network and determines the strength of the 

connection. In the artificial neuron, the weight is a numerical value that corresponds to the synapse. 

Biological Neural Network Artificial Neural Networks 

Dendrites  Inputs  

Cell Nucleus  Neurons  

Synapse  Weights  

Axon  Output  
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Negative weights indicate inhibitory connections, while positive values indicate excitatory 

connections. 

The next components of the model capture the actual activity of the neuron cell. All inputs are 

combined together and adjusted by the respective weights. This combination of inputs is referred 

to as a linear combination. Finally, an activation function is applied to control the magnitude of 

the output. For instance, the output may be constrained within an acceptable range, such as 0 to 1, 

or it could be between -1 and 1. 

Mathematically, this process is described in the figure 2.10 

 

Figure 12: Diagram of mathematical model of ANN 

From this model the interval activity of the neuron can be shown to be:  

 

The output of the neuron, yk, would therefore be the outcome of some activation function on the 

value of vk. 

i. Activation functions 

The activation function plays a crucial role as it acts as a function that compresses the output of a 

neuron within a specific range, typically between 0 and 1, or -1 and 1. Generally, there are three 

types of activation functions denoted as Φ (.). One of these types is the Threshold Function, which 

assigns a value of 0 if the total input is below a specified threshold value (v), and a value of 1 if 

the total input is equal to or greater than the threshold value. 
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Another type of activation function is the Piecewise-Linear function. This function, similar to the 

Threshold Function, can have values of 0 or 1. However, it can also have intermediate values 

within a specific range based on the amplification factor in a particular region of linear operation. 

 

The third type of activation function is the sigmoid function. This function typically spans from 0 

to 1, although it can also be adapted to the range of -1 to 1. One example of a sigmoid function is 

the hyperbolic tangent function. 

 

ii. The network activation rate 

During the process of supervised training in an artificial neural network, the activation 

function, also known as "alpha," plays a crucial role. This parameter is responsible for 

determining the initial network weights, which are referred to as the initial weights (wi1 to 

win). The final weights (wf1 to wfn) of the network are determined by the combination of the 

initial weights and the product of the network error vector and the chosen network input. 

 The final weights (wf1 to wfn) = the initial weight (wi1 to win) + (the network error 

vector)(the chosen network input)(alpha). 

The the network error vector is determinmined from the differene between the actual 

output and the network output. 

The network error vector = the actual output - the network output(Ezekwe, n.d.). 

 

c. The Artificial Neural Network Model 

It is important to note that every Artificial Neural Network will primarily consist of: 

i. The Input Layer 

ii. The Processing element or Hidden Layer 

iii. The Output Layer 
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Figure 13: Artificial Neural Network model (two processing element region) 

A neural network model consists of multiple neurons arranged in different layers: an input layer, 

one or more hidden layers, and an output layer. The input layer receives input variables and passes 

them to the network. The hidden layer acts as an intermediary between the input and output layers. 

The neurons in this layer are essentially hidden from view, and their arrangement and number are 

often treated as a black box by system operators. The primary function of the hidden layer is to 

process the input variables. This involves summing up the weighted inputs, checking if the sum 

meets a specific threshold, and applying a transformation function. The weights between the input 

neurons and hidden neurons determine when each unit in the hidden layer becomes active or 

remains inactive. By adjusting these weights, the hidden layer learns the relationship between 

inputs and outputs, similar to the way the human brain operates. The output layer serves a similar 

purpose to the hidden layer, with each neuron in this layer receiving inputs as in the hidden layer. 

The specific characteristics of a neural network model are defined by its topology (structure), 

learning paradigm, and learning algorithm. 

Types of Artificial Neural Network 

Neural networks can exist either in hardware form, where neurons are embodied by tangible 

components, or as software-based constructs represented by computer models. These networks 

encompass diverse configurations and employ a range of topologies and learning algorithms. 

i. Feed forward Network: The initial and most basic form of neural network was the feed 

forward neural network. In this architecture, data flows exclusively from the input layer 

through possible hidden layers to the output layer without forming loops or cycles. Feed 

forward networks come in diverse variations, employing different unit types, including 

binary McCulloch–Pitts neurons. The most straightforward among these is the perceptron. 

In scenarios involving back propagation, continuous neurons, often activated with sigmoid 

functions, are commonly employed. 

ii. Deep belief network: A deep belief network (DBN), comprising multiple hidden layers, 

is a generative model with a probabilistic nature. It can be seen as an amalgamation of basic 

learning components. This network can be employed for generative pre-training of a deep 

neural network (DNN) by using the acquired DBN weights as initial weights for the DNN.  
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iii. Recurrent neural networks: Recurrent neural networks (RNNs) not only transmit data in 

the forward direction but also in reverse, from subsequent processing phases to preceding 

ones. RNNs find utility as versatile processors of sequences in general. 

iv. Modular neural network: Research in the field of biology has demonstrated that the 

human brain functions as an assembly of smaller networks. This understanding led to the 

emergence of the notion of modular neural networks, where multiple compact networks 

collaborate or contend to address challenges. 

v. Physical neural network: A tangible neural network comprises materials with electrically 

modifiable resistance to mimic synthetic synapses. Instances encompass the ADALINE 

neural network based on memristors. An optical neural network is a real-world realization 

of an artificial neural network that employs optical components. 

vi. Dynamic neural networks: Dynamic neural networks deal with nonlinear interactions 

among multiple variables and encompass time-varying behaviors, including learning, 

transient occurrences, and delays. Methods for deducing a system's functioning from 

observed data are categorized as system identification techniques. 

vii. Memory networks: Memory networks integrate an extended memory capability. This 

memory can be both accessed and updated, primarily intended for predictive purposes. 

These models find application in question answering scenarios, where the prolonged 

memory operates as a dynamic knowledge repository, generating text-based responses.  

Artificial Neural Network Training 

Neural networks acquire knowledge through the analysis of examples, where each example 

consists of a known input and result. This process forms connections between the input and result, 

which are stored within the network itself. To train a neural network, it compares the output it 

generates (often a prediction) with the desired output and calculates the difference, known as the 

error. Using a learning rule and the error value, the network then adjusts its connections. By 

repeating this adjustment process, the neural network gradually improves its output to closely 

match the desired result. The training continues until certain criteria are met, at which point it can 

be concluded. This type of learning is referred to as supervised learning. 

These systems acquire the ability to carry out tasks by examining examples, typically without the 

need for explicit programming of task-specific instructions. For instance, in the context of image 

recognition, they can learn to recognize images containing cats by analyzing labeled examples of 

"cat" or "no cat" and using that knowledge to identify cats in other images. Remarkably, they 

accomplish this without any prior knowledge about cats, such as their possession of fur, tails, 

whiskers, or cat-like faces. Instead, they autonomously generate distinguishing features based on 

the examples they process. 

Learning 

Learning is the process of enabling a network to enhance its performance in a given task by 

analyzing sample observations. It entails modifying the weights (and possibly thresholds) of the 

network to enhance the accuracy of its outputs. This adjustment is achieved by minimizing the 

errors observed during the learning process. Learning is considered finished when further 

examination of additional observations ceases to significantly decrease the error rate. However, 

even after learning, it is common for the error rate to remain nonzero. If the error rate remains 

unacceptably high post-learning, it is often necessary to redesign the network. 

IEEE-SEM, Volume 12, Issue 2, February 2024 
ISSN 2320-9151 44

Copyright © 2024 IEEE-SEM Publications

IEEESEM



Supervised Learning 

Supervised learning is a machine learning approach employed when dealing with data that is 

labeled, where each data point contains both features (covariates) and a corresponding label. The 

primary objective of supervised learning algorithms is to learn a function that can map input feature 

vectors to their respective labels (Nath & Levinson, 2014), using the available example input-

output pairs. These algorithms deduce this function by examining a set of labeled training data, 

comprising various training examples. In supervised learning, each example consists of an input 

object (often represented as a vector) and an associated desired output value, also referred to as the 

supervisory signal. By analyzing the provided training data, a supervised learning algorithm 

generates an inferred function, which can subsequently be used to map new examples. 

Unsupervised Learning 

Unsupervised learning pertains to algorithms that acquire patterns and structures from unlabeled 

data. Unlike supervised learning, where models are trained to map input to target output (such as 

classifying images as "cat" or "fish"), unsupervised methods focus on learning condensed 

representations of the input data. These representations can be utilized for data exploration, 

analysis, or even generating new data. Within the spectrum of supervision, other levels include 

reinforcement learning, where the machine receives performance scores as guidance, and semi-

supervised learning, where only a subset of the training data is labeled. 

 Use of Artificial Neural Network 

ANN capabilities fall within the following broad categories: 

i. Function approximation, or regression analysis, including time series prediction, fitness 

approximation and modeling 

ii. Classification, including pattern and sequence recognition, novelty detection and 

sequential decision making. 

iii. Data processing, including filtering, clustering, blind source separation and compression. 

iv. Robotics, including directing manipulators and prostheses. 

Application of Artificial Neural Network 

Artificial neural networks (ANNs) have diverse applications across various disciplines due to their 

capability to replicate and model nonlinear processes. They include: 

i. ANNs find application in areas such as system identification, control, and prediction, 

including vehicle control, trajectory prediction, process control, and natural resource 

management. 

ii.  They are also utilized in fields like quantum chemistry, general game playing, and pattern 

recognition, including radar systems, face identification, signal classification, 3D 

reconstruction, and object recognition. 

iii. ANNs play a role in sensor data analysis, sequence recognition (such as gesture, speech, 

and text recognition), medical diagnosis, finance (e.g., financial long-run forecasts and 

artificial financial markets), data mining, visualization, machine translation, and social 

network and e-mail spam filtering. 
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iv.  Furthermore, ANNs have demonstrated potential in diagnosing various types of cancers 

and distinguishing between highly invasive and less invasive cancer cell lines solely based 

on cell shape information. 

Advantages of Artificial Neural Networks 

Advantages of artificial neural networks include: 

i. Parallel processing abilities mean the network can perform more than one job at a time. 

ii. Information is stored on an entire network, not just a database. 

iii. The ability to learn and model nonlinear, complex relationships helps model the real-life 

relationships between input and output. 

iv. Fault tolerance means the corruption of one or more cells of the ANN will not stop the 

generation of output. 

v. Gradual corruption means the network will slowly degrade over time, instead of a problem 

destroying the network instantly. 

 Disadvantages of Artificial Neural Networks 

The disadvantages of ANNs include: 

i. The lack of rules for determining the proper network structure means the appropriate 

artificial neural network architecture can only be found through trial and error and 

experience. 

ii. The requirement of processors with parallel processing abilities makes neural networks 

hardware-dependent. 

iii. The network works with numerical information, therefore all problems must be translated 

into numerical values before they can be presented to the ANN. 

iv. The lack of explanation behind probing solutions is one of the biggest disadvantages in 

ANNs. The inability to explain the why or how behind the solution generates a lack of trust 

in the network. 

 

V. RELATED WORKS ON NEURONAL MULTIPLEXERS WITH BACK 

PROPAGATION ALGORITHM 

Not much focus has been placed on emulating logic devices with Artificial Neural Network but 

artificial intelligence has been making steady breakthrough in recent time thus it has been 

garnering more attention. Such case study will be explored in the paragraphs below 

(Ferrer et al., 2004) work is about creating a special kind of computer chip called an FPGA(Field 

Programmable Gate Array) that can run a neural network. This neural network can be customized 

easily to work with different types of data or tasks. The chip's design allows you to change things 

like the number of layers and neurons in the network, how data is represented, and how calculations 

are done. It also lets you test different setups quickly to find the best balance between speed and 

accuracy. The chip uses a particular way of doing calculations, called fixed-point arithmetic, which 

helps make things faster. The researchers tried this chip on an older computer board and found that 

it worked really well. It was much faster than running the same neural network on regular software 

like MATLAB. This shows that using this chip can greatly speed up certain types of computations 

(Mukkara & Ramanaiah, 2019)paper, the researchers came up with a special way to build a 

"neuronal half adder" using computer chips called VLSI (Very Large Scale Integrated circuit). 

They used a specific algorithm called "CSD" to make it work. Then, they tested this design on a 

chip called FPGA and compared the results with two other methods: "vedic multiplier" and a 
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regular method. They found that the CSD (Canonic Signed Digit) algorithm had the fastest 

response time (lowest delay) and used less power compared to the Vedic algorithm and the regular 

method. However, the drawback was that the CSD algorithm needed more space on the chip (area) 

compared to the other methods. So, it's a trade-off between speed and power efficiency on one side 

and chip space on the other. 

VI. SUMMARY OF THE LITERATURE (IN A TABLE) 

Table 2.2: Summary of the Literature 

S/

N 

AUTHOR

(S), DATE 

AND 

TITLE 

RESEAR

CH 

OBJECTI

VE 

METHODOL

OGIES 

FINDINGS 

INHERENT GAPS 

1 (Garg & 

Kaur, 

2019) 

A Review 

of Logic 

Gates and 

Its 

Applicatio

ns 

 

Identifying 

the types of 

logic gates 

and their 

application

s 

Systematic 

literature 

review  

 

Outline of the 

types and 

application of 

simple logic gate 

 

Only covered simple 

logic gates and not all 

application of the 

covered gates was 

described 

2 (Yellamraj

u et al., 

2013) 

Design of 

various 

logic gates 

in neural 

networks 

Designing 

and 

implementi

ng a 

biologicall

y inspired 

neuron 

which will 

accept 

multiple 

synaptic 

inputs. 

CMOS 

(Complementa

ry Metal-

Oxide-

Semiconductor

) technique 

(I)The design and 

simulation of the 

pulsed output 

neuron and its 

simulations have 

been presented. 

(II)The design of 

the logical OR, 

AND & NOT 

gates have also 

been designed and 

presented. 

The brain operates 

with very minimal 

voltage and frequency 

levels, but precisely 

replicating these 

parameters in S-Edit is 

difficult. Nevertheless, 

trying out various 

voltage settings in S-

Edit has the potential 

to achieve maximum 

efficiency, even 

though exact outcomes 

might not be 

attainable. 

3 (Mohamma

dhassani et 

al., 2013) 

To 

familiarize 

the reader 

with ANN-

based 

Experimental 

data from eight 

high strength 

self-

compacting 

An historical 

summary of the 

evolution of the 

field of 

neurocomputing 

Not stated in the 

research paper 
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Applicatio

n of 

artificial 

neural 

networks 

(ANNs) 

and linear 

regressions 

(LR) to 

predict the 

deflection 

of concrete 

deep beams 

computing 

(neurocom

puting) 

concrete 

(HSSCC) 

deep- beams. 

was presented 

along with a 

review of the 

basic issues 

pertaining to 

ANN-based 

computing and 

ANN de- sign.  

4 (Ferrer et 

al., 2004) 

Creating a 

special 

kind of 

computer 

chip that 

can run a 

neural 

network. 

Reprogramabil

ity of FPGAs to 

implement a 

whole family 

of multilayer 

perceptronneur

al networks 

modifying only 

a set of 

parametersin 

compilation 

time. 

A flexible and 

scalable design 

was obtained for a 

whole family of 

multilayer 

perceptron neural 

networks. 

Not stated in the 

research paper 

5 (Mukkara 

& 

Ramanaiah

, 2019) 

VLSI 

implementa

tion of 

neuronal 

half adder 

with CSD 

algorithm 

is proposed 

and 

implemente

d in FPGA. 

Neuronal CSD 

Half adder is 

proposed and 

implemented 

on FPGA. 

It is observed 

CSD half adder 

faster in 

performance with 

comparable low 

power 

consumption with 

that of other two 

multipliers. This 

work can be 

extended to 

implement any 

other 

combinational 

circuits. 

Not stated in the 

research paper 
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VII. RESEARCH GAPS AND RESEARCH CONTRIBUTIONS 

In the field of artificial neural network emulation of logic devices, certain research gaps have 

emerged. While considerable research has been conducted on simple logic devices, there remains 

a significant gap in exploring the emulation of more intricate and multifunctional logic devices 

using artificial neural networks. Additionally, the absence of standardized methodologies tailored 

for selecting neural network architectures, training parameters, and performance evaluation 

metrics specific to logic device emulation is notable 

On the other hand, the research in this field contributes significantly to advancing the accuracy 

and efficiency of neural network emulation models. These contributions range from optimizing 

training strategies to enhance the speed and effectiveness of emulations, to proposing hybrid 

approaches that combine neural networks with other computational techniques for improved 

performance.  
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