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ABSTRACT: 

Elastic instability of structural materials of which buckling is a critical example has been in the search 

light of investigations for a long time now. In this paper, we embark on a similar investigation 

involving deterministically imperfect but clamped finite circular cylindrical shells. As the governing 

equations are strictly nonlinear, we employ asymptotic and perturbation procedures in a purely 

analytical approach to solve the problem. The imperfection and buckling modes are expressed in a 

form of Fourier series and also in a form compatible with the boundary conditions.  

The results show, among other things, that the number of buckling modes increases with higher 

order perturbations. Using only the buckling modes in the shape of imperfection, the static buckling 

load was also derived and was seen to be in a form characteristic of all cubic structures of which the 

cylindrical shells are practical examples. 
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1. INTRODUCTION  

This analysis is concerned with analytical investigation of the emergence of several buckling 

modes as well as static buckling load of imperfect finite circular cylindrical shells with 

clamped boundary conditions. Circular cylindrical shells under static and dynamic loading 

conditions have been investigated for a long time now. In one of such early investigations, 

Batdorf [1], presented a simplified method of elastic –stability analysis for cylindrical shells 

while Amazigo and Frazer [2] studied the buckling, under external pressure, of cylindrical 

shells with dimple-shaped initial imperfections. In yet another study, Budiansky and 

Amazigo [3] investigated the initial post buckling behaviour of cylindrical shells under 

external pressure while Lockhart and Amazigo [4] similarly investigated the dynamic 

buckling of externally pressurized imperfect cylindrical shells. Relatively-recent studies on 

the subject matter include Hu and Burgue�̃�o [5] who investigated elastic post-buckling 

response of axially-loaded cylindrical shells with seeded geometric imperfection design, 

while Kriegesmann et al. [6] studied size dependent probabilistic design of axially 

compressed cylindrical shells. Investigations by Castro et al. [7] and Burgue�̃�o [8] on the 

subject matter were particularly insightful. 
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In this study, we shall assume cylindrical shells with arbitrary stress-free initial 

displacement (which serves as the initial imperfection), while the cylindrical shells, as a 

whole, are subjected to lateral or hydrostatic pressure. The magnitude of the imperfection is 

assumed small compared to shell thickness, and, as in Ette and Chukwuchekwa [9], we shall 

adopt asymptotic and perturbation techniques where all series expansions are made in 

terms of the small magnitude of the imperfection ϵ. 

In most of the earlier investigations such as the ones by Koiter [10], it was assumed that the 

imperfections could be taken in the shape of the classical buckling mode. This assertion is 

not fully adhered to in this study. Rather, a judicious use is made of representations of the 

imperfection and the normal displacement in terms of Fourier series and in a manner 

compatible with the boundary conditions. Since one of our objectives is anchored on 

determining the eigen buckling modes, we are not necessarily restricting the buckling modes 

to be strictly in the shape of either the imperfection or classical buckling mode. In this way, 

we are able to account for all the possible eigen buckling modes within the limit of accuracy 

retained. Other similar investigations are seen in [11]-[18] 

 

2.  CIRCULAR CYLINDER EQUATIONS  

The associated Karman-Donnell equations of equilibrium and compatibility equation [4] 

governing the normal deflection 𝑊(𝑋, 𝑌)  and Airy stress function 𝐹(𝑋, 𝑌) for cylindrical 

shells of length 𝐿, radius 𝑅, thickness ℎ, bending stiffness 𝐷 =
𝐸ℎ3

12(𝐿−𝜐2)
 , (where E and 𝜈 are 

the Young’s modulus and Poisson ratio respectively), mass per unit area ρ, subjected to 

external pressure per unit area 𝑃  are   

                𝐷∇4𝑊 +
1

𝑅
𝐹, 𝑋𝑋= 𝑆̅(𝑊 + �̅�, 𝐹) − 𝑃       (2.1) 

               
1

𝐸ℎ
∇4𝐹 −

1

𝑅
𝑊,𝑋𝑋= −𝑆 (𝑊,

1

2
𝑊 + �̅�)      (2.2a) 

                         0 < 𝑋 < 𝐿,     0 < 𝑌 < 𝑅       (2.2b) 

                   𝑊 = 𝑊,𝑋= 0    at   𝑋 = 0, 𝜋       (2.2c) 

where 𝑋 and 𝑌 are the axial and circumferential coordinates respectively and   YXW ,  is a 

twice-differentiable stress-free and time independent imperfection. Except and perhaps 

some terms on the right-hand sides of (2.1) and (2.2a, b, c) a subscript placed after a comma 

indicates partial differentiation, while 𝑆̅ is the symmetric bilinear operator given by 

              𝑆̅(𝑃, 𝑄) = 𝑃,𝑋𝑋 𝑄,𝑌𝑌+ 𝑃,𝑌𝑌 𝑄,𝑋𝑋− 2𝑃,𝑋𝑌 𝑄,𝑋𝑌     (2.3a) 

and  ∇4  is the bi-harmonic operator defined by 

                        ∇4= (
𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
)
2

        (2.3b) 

      

3.  NONDIMENSIONALIZATION OF THE GOVERNING EQUATIONS 

We now introduce the following non dimensional quantities 

                 𝑥 =
𝑋𝜋

𝐿
 ,          𝑦 =

2𝜋

𝑅
 ,          𝜖�̅� =

�̅�

ℎ
 ,         𝑤 =

𝑊

ℎ
   (3.1a) 
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                 𝜆 =
𝐿2𝑅𝑃

𝜋2𝐷
 ,             𝐴 =

𝐿2√12(1−𝜐2)

𝜋𝑅𝐿
 ,              𝜉 =

𝐿2

𝜋2𝑅2
     (3.1b)  

          𝐾(𝜉) =
𝐴2

(1+𝜉)2
 ,          𝐻 =

ℎ

𝑅
 ,       0 < 𝜖 ≪ 1   (3.1c) 

We shall assume clamped boundary conditions and shall neglect boundary layer effects by 

assuming that the pre-buckling deflection is constant so that we let 

                 𝐹 = −
𝑃𝑅

2
(𝑋2 +

𝛼𝑌2

2
) + (

𝐸ℎ2𝐿

𝜋2𝑅(1+𝜉)2
) 𝑓       (3.2) 

                𝑊 =
𝑃𝑅2(1−

𝛼𝜐

2
)

𝐸ℎ
+ ℎ𝑤       (3.3) 

where is P the applied static load and 𝜆 is the non-dimensional load parameter. The first 

terms on the right-hand sides of (3.2) and (3.3) are pre-buckling approximations, while the 

parameter α shall take the value 𝛼 = 1, if pressure contributes to axial stress through the 

ends, whereas 𝛼 = 0, if pressure only acts laterally. On substituting (3.2) and (3.3) into (2.1) 

and (2.2) and simplifying, we get 

       ∇̅4𝑤 − 𝐾(𝜉)𝑓,𝑥𝑥+ 𝜆 [
𝛼

2
(𝑤 + 𝜖�̅�),𝑥𝑥+ 𝜉(𝑤 + 𝜖�̅�),𝑦𝑦 ] = −𝐻𝐾(𝜉)𝑆(𝑤 + 𝜖�̅�, 𝑓) (3.4) 

and  

                   ∇̅4𝑓 − (1 + 𝜉)2𝑤,𝑥𝑥= −𝐻(1 + 𝜉)
2𝑆 (𝑤,

1

2
𝑤 + 𝜖�̅�)   (3.5a) 

                                  0 < 𝑥 < 𝜋,     0 < 𝑦 < 2𝜋 ,      0 < 𝜖 ≪ 1    (3.5b) 

                                   𝑤 = 𝑤,𝑋= 0    at   𝑥 = 0, 𝜋          (3.5c) 

and where,   

                        ∇̅4= (
𝜕2

𝜕𝑥2
+ 𝜉

𝜕2

𝜕𝑦2
)
2

     (3.5d) 

             𝑆(𝑃, 𝑄) = 𝑃,𝑥𝑥 𝑄,𝑦𝑦+ 𝑃,𝑦𝑦 𝑄,𝑥𝑥− 2𝑃,𝑥𝑦 𝑄,𝑥𝑦    (3.5e) 

 

4.   CLASSICAL BUCKLING LOAD    

The classical buckling load 𝜆𝐶  is the load required to buckle the associated perfect linear 

structure and the required equations, from (3.4) and (3.5a) are 

             ∇̅4𝑤 − 𝐾(𝜉)𝑓,𝑥𝑥+ 𝜆 [
𝛼

2
𝑤,𝑥𝑥+ 𝜖�̅�,𝑦𝑦 ] = 0     (4.1) 

and 

                                              ∇̅4𝑓 − (1 + 𝜉)2𝑤,𝑥𝑥 = 0    (4.2a) 

            0 < 𝑥 < 𝜋,     0 < 𝑦 < 2𝜋 ,     𝑤 = 𝑤,𝑋= 0    at   𝑥 = 0, 𝜋    (4.2b) 

Based on the boundary conditions, the general solution to (4.1) and (4.2a,b) will be a 

superposition of the form 

               (𝑤, 𝑓) = (𝛼𝑟𝑘, 𝛽𝑟𝑘)(1 − cos 2𝑟𝑥) sin 𝑘𝑦      (4.3) 

where, 

                       (𝛼𝑟𝑘, 𝛽𝑟𝑘) ≠ (0,0) 

On substituting (4.3) into the left hand sides of (4.1) and (4.2a), we get 

       (∇̅4𝑤, ∇̅4𝑓) = (𝛼𝑟𝑘 , 𝛽𝑟𝑘)[−(16𝑟
4 + 8𝜉𝑟2𝑘2) cos 2𝑟𝑥 sin 𝑘𝑦      (4.4) 
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Now, substituting for ∇̅4𝑓  from (4.4) into (4.2a) and after simplifying by first multiplying 

the resultant equation by cos 2𝑚𝑥 sin 𝑛𝑦 (for 𝑚, 𝑛 fixed and positive integers), and 

integrating from 0 to π (for 𝑥) and from 0 to 2π (for 𝑦), we get 

                  𝛽𝑚𝑛 =
4(1+𝜉)2𝑚2𝛼𝑚𝑛

4(𝑚2+𝑛2𝜉)2
     (4.5) 

   We next substitute (4.5) into (4.1), using ∇̅4𝑤 as in (4.4), multiply by cos 2𝑚𝑥 sin 𝑛𝑦 and 

integrate as before to get  

         𝛼𝑚𝑛[(4𝑚
2 + 𝑛2𝜉)2 − 𝜆(2𝑚2𝛼 − 𝑛2𝜉)] + 4𝐾(𝜉)𝑚2𝛽𝑚𝑛 = 0     (4.6) 

 By simplifying, we get 

                     𝜆 =
(4𝑚2(1+𝜉))2𝐾(𝜉)+(4𝑚2+𝑛2𝜉)4

(2𝑚2𝛼+𝑛2𝜉)(4𝑚2+𝑛2𝜉)2
     (4.7a) 

   That is  

                     𝜆 =
(4𝑚2+𝑛2𝜉)4−(4𝑚𝐴)2

(2𝑚2𝛼+𝑛2𝜉)(4𝑚2+𝑛2𝜉)2
     (4.7b) 

where we have substituted for 𝐾(𝜉) to get (4.7b). 

Usually, 𝑚 and 𝑛 take the values 𝑚 = 1,2,3, …  and  𝑛 = 0,1,2,3,… 

Batdorf [1] had assumed that 𝑛 varies continuously, and so he minimized λ with respect to 

𝑛. Thus, if �̂� is the value of 𝑛 that minimizes λ, then, the value of 𝜆 at �̂� was taken as the 

classical buckling load 𝜆𝐶 . Thus, in this case, we get 

                      𝜆𝐶 =
(4𝑚2+�̂�2𝜉)4−(4𝑚Θ)2

(2𝑚2𝛼+�̂�2𝜉)(4𝑚2+�̂�2𝜉)2
      (4.8) 

If 𝑚 = 1 is the nontrivial values of 𝑚 and we let  𝜁 = �̂�2𝜉, then  

                     𝜆𝐶 =
(4+𝜁)4−(4Θ)2

(2𝛼+𝜁)(4+𝜁)2
      (4.9) 

Thus, the corresponding deflection and Airy Stress function are 

              (𝑤, 𝑓) = (1,
4(1+𝜁)2

(4+𝜁)2
)𝛼1�̂�(1 − cos 2𝑥) sin �̂�𝑦    (4.10) 

 

5. SOLUTION OF THE FULL STATIC PROBLEM 

In [4] where simply-supported boundary conditions were used, it was assumed that if the 

edge effects could be neglected, then the imperfection �̅�(𝑥, 𝑦) could be taken in the form of 

Fourier series expansions thus: 

             �̅�(𝑥, 𝑦) = �̅�1𝑛 sin 𝑥 sin 𝑛𝑦 + ∑ (�̅�𝑚𝑘 sin 𝑘𝑦 +
∞
𝑚=1,𝑘=0
(𝑚,𝑘)≠(1,𝑛)

�̅�𝑚𝑘 cos 𝑘𝑦) sin𝑚𝑥              (5.1a) 

or 

             �̅�(𝑥, 𝑦) = ∑ (�̅�𝑚𝑘 sin 𝑘𝑦 +
∞
𝑚=1,𝑘=0 �̅�𝑚𝑘 cos 𝑘𝑦) sin𝑚𝑥                    (5.1b)   

with, 

                     �̅�1𝑛 = 0                 (5.1c) 

 In our investigation concerning clamped boundary conditions, we shall take 

             �̅�(𝑥, 𝑦) = �̅�(1 − cos 2𝑚𝑥) sin 𝑛𝑦     (5.2) 

and also assume the following asymptotic expansions 

               (𝑤, 𝑓) = ∑ (𝑤
(𝑖)

𝑓(𝑖)
) 𝜖𝑖∞

𝑖=1      (5.3) 
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On substituting (5.3) into (3.5a) and (3.4) and equating the orders of ϵ (beginning with 

(3.5a) in each case), we get 

     𝑂(𝜖):     {    
𝐿(1)(𝑓(1), 𝑤(1)) ≡ ∇̅4𝑓(1) − (1 + 𝜉)2𝑤,𝑥𝑥

(1)= 0                                                   (5.4)

∇̅4𝑤(1) − 𝐾(𝜉)𝑓,𝑥𝑥
(1)+ 𝜆 [

𝛼

2
(𝑤(1) + �̅�),𝑥𝑥+ 𝜉(𝑤

(1) + �̅�),𝑦𝑦 ] = 0                  (5.5)
  

   𝑂(𝜖2):   

{
 
 

 
 

   

𝐿(1)(𝑓(2), 𝑤(2)) = −(1 + 𝜉)2𝐻 [𝑆 (𝑤(1),
1

2
𝑤(1)) + 𝑆(𝑤(1), �̅�)]                      (5.6) 

𝐿(2)(𝑓(2), 𝑤(2)) ≡ ∇̅4𝑤(2) − 𝐾(𝜉)𝑓,𝑥𝑥
(2)+ 𝜆 [

𝛼

2
𝑤(2),𝑥𝑥+ 𝜖𝑤

(2),𝑦𝑦 ]

                                            = −𝐻𝐾(𝜉)[𝑆(𝑤(1), 𝑓(1)) + 𝑆(�̅�, 𝑓(1))]                         (5.7)

                  

   𝑂(𝜖3):    {
   𝐿(1)(𝑓(3), 𝑤(3)) = (1 + 𝜉)2𝐻 [𝑆 (𝑤(1),

1

2
𝑤(2)) + 𝑆 (𝑤(2),

1

2
𝑤(1)) + 𝑆(𝑤(2), �̅�)]

𝐿(2)(𝑓(3), 𝑤(3)) = −𝐻𝐾(𝜉) [𝑆 (𝑤(1), 𝑓,𝑥
(2)
) + 𝑆(𝑤(2), 𝑓(1)) + 𝑆(�̅�, 𝑓(2))]

     
(5.8)
(5.9)

 

etc.     

where, 

                   𝑤(𝑖) = 𝑤,𝑥
(𝑖)
= 𝑓(𝑖) = 𝑓,𝑥

(𝑖)
= 0    at      𝑥 = 0, 𝜋,      𝑖 = 1,2,3,…   (5.10) 

 

5.1         SOLUTION OF EQUATION OF ORDER ϵ  

For solution of (5.4) and (5.5) we let 

       (𝑤
(1)

𝑓(1)
) = ∑ (

𝑤(𝑟,𝑝)
(1)

𝑓(𝑟,𝑝)
(1) ) (1 − cos 2𝑟𝑥) sin 𝑝𝑦

∞
𝑟,𝑝=1                 (5.11) 

On assuming (5.11) we note that 

       (∇̅
4𝑤(1)

∇̅4𝑓(1)
) = ∑ (

𝑤(𝑟,𝑝)
(𝑖)

𝑓(𝑟,𝑝)
(𝑖) )

∞
𝑟,𝑝=1,2,3,… [(−16𝑟4 + 8𝜉(𝑟𝑝)2) cos 2𝑟𝑥 sin 𝑝𝑦 

                                                              +(𝜉𝑝2)2(1 − cos 2𝑟𝑥) sin 𝑝𝑦]    (5.12) 

The aim is to choose 𝑟 and 𝑝 (positive integers) such that we have nontrivial values of 𝑤(1)  

and 𝑓(1).  On substituting (5.12) into (5.4), multiplying after by cos 2𝑚𝑥 sin 𝑛𝑦 (for 𝑚, 𝑛 fixed 

and positive integers), we see that for  𝑟 = 𝑚,  𝑝 = 𝑛, we integrate to get 

                   𝑓(𝑚,𝑛)
(1) =

−4(1+𝜉)2𝑚2𝑤(𝑚,𝑛)
(1)

(4𝑚2+𝑛2𝜉)2
                (5.13) 

Next, we substitute (5.12) and (5.11) into (5.5) (assuming (5.2)), multiply by cos 2𝑚𝑥 sin 𝑛𝑦  

and for  𝑟 = 𝑚, 𝑝 = 𝑛, we integrate to get 

  [(4𝑚2 + 𝑛2𝜉) − 𝜆(2𝛼𝑚2 − 𝑛2𝜉)]𝑤(𝑚,𝑛)
(1) + 4𝑚2𝐾(𝜉)𝑓(𝑚,𝑛)

(1) = 𝜆(�̅� + 1)(2𝛼𝑚2 − 𝑛2𝜉)                                                                                           

On substituting for 𝑓(𝑚,𝑛)
(1)  in (5.14) from (5.13) we simplify to get 

              𝑤(𝑚,𝑛)
(1) =

𝜆(�̅�+1)(2𝛼𝑚2−𝑛2𝜉)

(4𝑚2+𝑛2𝜉)+(
4𝑚𝐴

4𝑚2+𝑛2𝜉
)
2

−𝜆(2𝛼𝑚2−𝑛2𝜉)
    (5.15) 

where we have substituted for 𝐾(𝜉).  At this stage, we get   

                  𝑤(𝑖) = 𝑤(𝑚,𝑛)
(1) (1 − cos 2𝑚𝑥) sin 𝑛𝑦    

                  𝑓(1) = −Θ0𝑤(𝑚,𝑛)
(1) (1 − cos 2𝑚𝑥) sin 𝑛𝑦,    Θ0 = (

2𝑚(1+𝜉)

4𝑚2+𝑛2𝜉
)
2

    (5.16) 
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5.2      SOLUTION OF EQUATION OF ORDER 𝜖2         

On substituting (5.16) on the right hand sides of (5.6) and (5.7) and simplifying, we get       

and  𝐿(1)(𝑓(2), 𝑤(2)) = −4𝐻(1 + 𝜉)2(𝑚𝑛)2 (𝑤(𝑚,𝑛)
(1)2 + 2�̅�𝑤(𝑚,𝑛)

(1) ) 

                                            × [cos 2𝑚𝑥 sin2 𝑛𝑦 + cos2 2𝑚𝑥 sin2 𝑛𝑦 + sin2 2𝑚𝑥 cos2 𝑛𝑦] 

                                    = −4𝐻(1 + 𝜉)2(𝑚𝑛)2 (𝑤(𝑚,𝑛)
(1)2 + 2�̅�𝑤(𝑚,𝑛)

(1) ) [
1

2
cos 2𝑚𝑥(1 − cos 2𝑛𝑦) 

                                         +
1

4
(1 − cos 2𝑛𝑦 + cos 4𝑚𝑥 − cos 4𝑚𝑥 cos 2𝑛𝑦) 

                                         +
1

4
(1 + cos 2𝑛𝑦 − cos 4𝑚𝑥 − cos 4𝑚𝑥 cos 2𝑛𝑦)]   (5.17) 

           𝐿(2)(𝑓(2), 𝑤(2)) = 8(𝑚𝑛)2Θ0𝐻𝐾(𝜉) (𝑤(𝑚,𝑛)
(1)2 + �̅�𝑤(𝑚,𝑛)

(1) ) 

                                             × [cos 2𝑚𝑥 sin2 𝑛𝑦 (1 − cos 2𝑚𝑥) + sin2 2𝑚𝑥 cos2 𝑛𝑦] 

                                        = 8(𝑚𝑛)2Θ0𝐻𝐾(𝜉) (𝑤(𝑚,𝑛)
(1)2 + 2�̅�𝑤(𝑚,𝑛)

(1) ) [
1

2
cos 2𝑚𝑥(1 − cos 2𝑛𝑦) 

                                           +
1

4
(1 + cos 4𝑚𝑥 − cos 2𝑛𝑦 − cos 4𝑚𝑥 cos 2𝑛𝑦) 

                                           +
1

4
(1 − cos 4𝑚𝑥 − cos 2𝑛𝑦 − cos 4𝑚𝑥 cos 2𝑛𝑦)]  (5.18) 

It is clear from (5.17) and (5.18) that at this stage, there will be only two buckling modes 

generated by the terms cos 2𝑚𝑥 sin 𝑛𝑦  and cos 4𝑚𝑥 cos 2𝑛𝑦. From this stage onwards, we 

shall assume 

          (𝑤
(𝑖)

𝑓(𝑖)
) = ∑ [{(

𝑤1(𝑟,𝑝)
(𝑖)

𝑓
1(𝑟,𝑝)
(𝑖) ) cos 𝑝𝑦 + (

𝑤2(𝑟,𝑝)
(𝑖)

𝑓
2(𝑟,𝑝)
(𝑖) ) sin 𝑝𝑦} (1 − cos 2𝑟𝑥)]∞

𝑟,𝑝=1,2,3..   (5.19) 

   Using (5.19), we note that 

      ∇̅4𝑤(𝑖) = ∑ [𝑤1(𝑟,𝑝)
(𝑖) {−(16𝑟4 + 8𝜉(𝑟𝑝)2)∞

𝑟,𝑝=1,2,3.. cos 2𝑟𝑥 cos 𝑝𝑦   

                        +𝜉2𝑝4(1 − cos 2𝑟𝑥) cos 𝑝𝑦} + 𝑤2(𝑟,𝑝)
(𝑖) {−(16𝑟4 + 8𝜉(𝑟𝑝)2) cos 2𝑟𝑥 sin 𝑝𝑦 

                        +𝜉2𝑝4(1 − cos 2𝑟𝑥) cos 𝑝𝑦}]              (5.20a) 

     and 

         ∇̅4𝑓(𝑖) = ∑ [𝑓1(𝑟,𝑝)
(𝑖) {−(16𝑟4 + 8𝜉(𝑟𝑝)2)∞

𝑟,𝑝=1,2,3.. cos 2𝑟𝑥 cos 𝑝𝑦   

                        +𝜉2𝑝4(1 − cos 2𝑟𝑥) cos 𝑝𝑦} + 𝑓2(𝑟,𝑝)
(𝑖) {−(16𝑟4 + 8𝜉(𝑟𝑝)2) cos 2𝑟𝑥 sin 𝑝𝑦 

                        +𝜉2𝑝4(1 − cos 2𝑟𝑥) cos 𝑝𝑦}]             (5.20b) 

Thus substituting (5.20a) into (5.17) and multiplying by cos 2𝑚𝑥 cos 2𝑛𝑦 we see that for 𝑟 =

𝑚, 𝑝 = 2𝑛, we get 

             𝑓1(𝑚,2𝑚)
(2) = −Θ1 (𝑤(𝑚,𝑛)

(𝑖)2 + 2�̅�𝑤(𝑚,𝑛)
(𝑖) ) − Θ2𝑤1(𝑚,2𝑛)

(2)             (5.20c) 

                       Θ1 =
(𝑚𝑛)2(1+𝜉)2𝐻

4(𝑚2+𝑛2𝜉)2
 ,      Θ2 =

1

4
(
𝑚(1+𝜉)

𝑚2+𝑛2𝜉
)
2

            (5.20d) 

Next, we multiply (5.17) by cos 4𝑚𝑥 cos 2𝑛𝑦 and for  𝑟 = 2𝑚, 𝑝 = 2𝑛,  we get 

           𝑓1(2𝑚,2𝑚)
(2) = −Θ3 (𝑤(𝑚,𝑛)

(𝑖)2 + 2�̅�𝑤(𝑚,𝑛)
(𝑖) ) − Θ4𝑤1(2𝑚,2𝑛)

(2)             (5.21a) 
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                       Θ3 =
(𝑚𝑛)2(1+𝜉)2𝐻

64(𝑚2+𝑛2𝜉)2
 ,      Θ4 = (

4𝑚(1+𝜉)

16𝑚2+4𝑛2𝜉
)
2

            (5.21b) 

We now substitute into (5.18) using (5.20a), multiply by cos 2𝑚𝑥 cos 2𝑛𝑦 and for  𝑟 = 𝑚, 

 𝑝 = 2𝑛, we simplify to get 

             𝑤1(𝑚,2𝑛)
(2) [16(𝑚2 + 𝑛2𝜉)2 − 2𝜆(𝛼𝑚2 − 2𝑛2𝜉)] + 4𝑚2𝐾(𝜉)𝑓1(𝑚,2𝑛)

(2)  

                                                                   = 4(𝑚𝑛)2Θ0𝐾(𝜉) (𝑤(𝑚,𝑛)
(1)2 + �̅�𝑤(𝑚,𝑛)

(1) ).          (5.22a) 

    If we substitute for  𝑓1(𝑚,2𝑛)
(2)    in  (5.22a), we get 

             𝑤1(𝑚,2𝑛)
(2) =

−Θ1(𝑤(𝑚,𝑛)
(1)2

+2�̅�𝑤(𝑚,𝑛)
(1)

)+4(𝑚𝑛)2Θ0𝐾(𝜉)(𝑤(𝑚,𝑛)
(1)2

+�̅�𝑤(𝑚,𝑛)
(1)

)

16(𝑚2+𝑛2𝜉)2+(
2𝑚𝐴

1+𝜉
)
2
Θ2−2𝜆(𝛼𝑚

2−2𝑛2𝜉)
            (5.22b) 

Similarly, if we multiply (5.18) by cos 4𝑚𝑥 cos 2𝑛𝑦, then for 𝑟 = 2𝑚,  𝑝 = 2𝑛, we simplify to 

get 

            𝑤1(2𝑚,2𝑛)
(2) [(16𝑚2 + 𝑛2𝜉)2 − 4𝜆(2𝑚𝛼 − 𝑛2𝜉)] + 16𝑚2𝐾(𝜉)𝑓1(2𝑚,2𝑛)

(2)  

                                                                   = 4(𝑚𝑛)2Θ0𝐾(𝜉) (𝑤(𝑚,𝑛)
(1)2 + �̅�𝑤(𝑚,𝑛)

(1) )         (5.23a) 

  On substituting for 𝑓1(2𝑚,2𝑛)
(2) ,  in (5.23a) we get 

            𝑤1(2𝑚,2𝑛)
(2) =

𝐾(𝜉)Θ3(𝑤(𝑚,𝑛)
(1)2

+2�̅�𝑤(2𝑚,2𝑛)
(1)

)+4(𝑚𝑛)2Θ4𝐾(𝜉)(𝑤(𝑚,𝑛)
(1)2

+�̅�𝑤(𝑚,𝑛)
(1)

)

(16𝑚2+4𝑛2𝜉)2+(
𝑚𝐴

1+𝜉
)
2
Θ4−4𝜆(2𝛼𝑚

2−𝑛2𝜉)
            (5.23b) 

We can further write  𝑤1(𝑚,2𝑛)
(2)   and  𝑤1(2𝑚,2𝑛)

(2)   as  

              𝑤1(𝑚,2𝑛)
(2) = Θ5𝑤(𝑚,𝑛)

(1)2 + Θ6�̅�𝑤(𝑚,𝑛)
(1)             (5.23c) 

and 

             𝑤1(2𝑚,2𝑛)
(2) = Θ7𝑤(𝑚,𝑛)

(1)2 + Θ8�̅�𝑤(𝑚,𝑛)
(1)            (5.23d) 

where, 

               Θ5 =
(2𝑚𝑛𝐴)2Θ0𝐻𝐾(𝜉)−Θ1

16(𝑚2+𝑛2𝜉)2+(
𝑚𝐴

1+𝜉
)
2
Θ2−2𝜆(𝛼𝑚

2−2𝑛2𝜉)
           (5.23e) 

               Θ6 =
(2𝑚𝑛𝐴)2Θ0𝐻𝐾(𝜉)−2Θ1

16(𝑚2+𝑛2𝜉)2+(
2𝑚𝐴

1+𝜉
)
2
Θ2−2𝜆(𝛼𝑚

2−2𝑛2𝜉)
            (5.23f) 

               Θ7 =
𝐾(𝜉)Θ3+(2𝑚𝑛𝐴)

2Θ4𝐻𝐾(𝜉)Θ0

16(𝑚2+𝑛2𝜉)2+(
2𝑚𝐴

1+𝜉
)
2
Θ2−2𝜆(𝛼𝑚

2−2𝑛2𝜉)
            (5.23g) 

               Θ8 =
−(

2𝑚𝐴

1+𝜉
)
2
Θ4𝐻−(

𝐴

1+𝜉
)
2
Θ3

16(𝑚2+𝑛2𝜉)2+(
2𝑚𝐴

1+𝜉
)
2
Θ2−2𝜆(𝛼𝑚

2−2𝑛2𝜉)
            (5.23h) 

Thus, at this order of perturbation, there are just two buckling modes with their 

corresponding Airy stress functions and these are 

         𝑤1(𝑚,2𝑛)
(2) (1 − cos 2𝑚𝑥) cos 2𝑛𝑦    and   𝑤1(2𝑚,2𝑛)

(2) (1 − cos 4𝑚𝑥) cos 2𝑛𝑦 

with respective stress functions given as 

       𝑓1(𝑚,2𝑛)
(2) (1 − cos 2𝑚𝑥) cos 2𝑛𝑦    and  𝑓1(2𝑚,2𝑛)

(2) (1 − cos 4𝑚𝑥) cos 2𝑛𝑦 
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5.3   SOLUTION OF EQUATION OF ORDER 𝜖3 

We now substitute on the right-hand sides (5.8) and (5.9) and simplify to get    

   𝐿(1)(𝑓(3), 𝑤(3)) = −
𝐻(1+𝜉)2(𝑚𝑛)2

4
[{20 (𝑤(𝑚,𝑛)

(1)
𝑤1(𝑚,2𝑛)
(2)

+ �̅�𝑤(𝑚,2𝑛)
(2) ) (1 − cos 2𝑚𝑥 sin 3𝑛𝑦 

                               −2 cos 2𝑚𝑥 sin 𝑛𝑦 − cos 4𝑚𝑥 sin 3𝑛𝑦 + cos 4𝑚𝑥 sin 𝑛𝑦)} 

                               +{16 (𝑤(𝑚,𝑛)
(1)

𝑤1(2𝑚,2𝑛)
(2)

+ �̅�𝑤1(2𝑚,2𝑛)
(2) ) (cos 2𝑚𝑥 cos 𝑛𝑦 − cos 2𝑚𝑥 cos 3𝑛𝑦 

                               −cos 6𝑚𝑥 cos 𝑛𝑦 + cos 6𝑚𝑥 cos 3𝑛𝑦)} 

                                +{16(𝑤(𝑚,𝑛)
(1) 𝑤1(2𝑚,2𝑛)

(2) + �̅�𝑤1(2𝑚,2𝑛)
(2) )(− cos 2𝑚𝑥 cos 𝑛𝑦 + cos 2𝑚𝑥 cos 3𝑛𝑦 

                                −cos 6𝑚𝑥 cos 𝑛𝑦 + cos 6𝑚𝑥 cos 3𝑛𝑦)}         

                                −{32𝑤(𝑚,𝑛)
(1)

𝑤1(𝑚,2𝑛)
(2) (sin 3𝑛𝑦 + sin 𝑛𝑦 − cos 4𝑚𝑥 sin 3𝑛𝑦 − cos 4𝑚𝑥 sin 𝑛𝑦)} 

                                +{32𝑤(𝑚,𝑛)
(1)

𝑤1(2𝑚,2𝑛)
(2) (cos 2𝑚𝑥 sin 3𝑛𝑦 + cos 2𝑚𝑥 cos 3𝑛𝑦 

                                 −cos 6𝑚𝑥 cos 3𝑛𝑦 − cos 6𝑚𝑥 cos 𝑛𝑦)}]    (5.24) 

 and 

     𝐿(2)(𝑓(3), 𝑤(3)) =
𝐻𝐾(𝜉)(𝑚𝑛)2

4
[{16(𝑤(𝑚,𝑛)

(1) 𝑓1(𝑚,2𝑛)
(2) + 𝑤1(𝑚,2𝑛)

(2) 𝑓(𝑚,𝑛)
(1) ) 

                               +4(𝑤(𝑚,𝑛)
(1) 𝑓1(𝑚,2𝑛)

(2) + 𝑤1(𝑚,2𝑛)
(2) 𝑓(𝑚,𝑛)

(1) ) + 8�̅�𝑓1(𝑚,2𝑛)
(2) }(−1 − 2 cos 2𝑚𝑥 sin 3𝑛𝑦 

                               −2cos 2𝑚𝑥 sin 𝑛𝑦 − cos 4𝑚𝑥 sin 3𝑛𝑦 + cos 4𝑚𝑥 sin 𝑛𝑦) 

                               +{16(𝑤(𝑚,𝑛)
(1) 𝑓1(2𝑚,2𝑛)

(2) +𝑤1(2𝑚,2𝑛)
(2) 𝑓(𝑚,𝑛)

(1) ) + 4�̅�𝑓1(2𝑚,2𝑛)
(2) }(cos 2𝑚𝑥 𝑐𝑜𝑠 𝑛𝑦 

                               −cos 2𝑚𝑥 cos 3𝑛𝑦 − cos 6𝑚𝑥 cos 𝑛𝑦 + cos 6𝑚𝑥 cos 3𝑛𝑦) 

                                +{16(𝑤(𝑚,𝑛)
(1)

𝑓1(𝑚,2𝑛)
(2)

+ 𝑤1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

) + �̅�𝑓1(2𝑚,2𝑛)
(2)

}(sin 3𝑛𝑦 + 𝑠𝑖𝑛 𝑛𝑦 

                                −cos 4𝑚𝑥 sin 3𝑛𝑦 − cos 4𝑚𝑥 sin 𝑛𝑦)        

                                +{32𝑤(𝑚,𝑛)
(1) 𝑓

1(2𝑚,2𝑛)
(2) +𝑤1(2𝑚,2𝑛)

(2) 𝑓
(𝑚,𝑛)
(1) + �̅�𝑓

1(2𝑚,2𝑛)
(2)

} 

                                    × (cos 2𝑚𝑥cos 3𝑛𝑦 + cos2𝑚𝑥cos𝑛𝑦− cos 6𝑚𝑥cos 3𝑛𝑦 

                                 −cos 6𝑚𝑥 cos 𝑛𝑦)]    (5.25) 

From the simplifications on the right hand sides of (5.24) and (5.25), it is obvious that there 

will be eight distinct and nontrivial eigen buckling modes namely 𝑤𝑖(𝑟,𝑝)
(3)  with their respective 

Airy stress functions 𝑓𝑖(𝑟,𝑝)
(3) .  These buckling modes correspond to the following terms on the 

right hand sides of  (5.24) and (5.25): 

    cos 2𝑚𝑥 cos 𝑛𝑦 , cos 2𝑚𝑥 sin 𝑛𝑦 ,   cos 2𝑚𝑥 cos 3𝑛𝑦 , cos 2𝑚𝑥 sin 3𝑛𝑦 ,   cos 4𝑚𝑥 sin 𝑛𝑦, 

    cos 4𝑚𝑥 sin 3𝑛𝑦 , cos 6𝑚𝑥 cos 𝑛𝑦   and   cos 6𝑚𝑥 cos 3𝑛𝑦. 

Next, we substitute (5.20a,b) into the left hand side of (5.24) multiply by cos 2𝑚𝑥 cos 𝑛𝑦  and 

integrate and for  𝑟 = 𝑚 and 𝑝 = 𝑛, we get, after simplification  

            𝑓1(𝑚,𝑛)
(3) =

8𝐻(1+𝜉)2(𝑚𝑛)2𝑤(𝑚,𝑛)
(1)

𝑤1(2𝑚,2𝑛)
(2)

−(1+𝜉)2𝑚2 𝑤1(𝑚,𝑛)
(3)

(4𝑚2+𝑛2𝜉)2
             (5.26a) 

 If we simplify (5.26a), we get 

           𝑓1(𝑚,𝑛)
(3)

= Θ9𝑤(𝑚,𝑛)
(1)

(Θ7𝑤(𝑚,𝑛)
(1)2

+ Θ8�̅�𝑤(𝑚,𝑛)
(1)

) − Θ10𝑤1(𝑚,𝑛)
(3)

              (5.26b) 
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where, 

                 Θ9 =
8𝐻(1+𝜉)2(𝑚𝑛)2

(4𝑚2+𝑛2𝜉)2
 ,         Θ10 =

4(1+𝜉)2𝑚2 

(4𝑚2+𝑛2𝜉)2
             (5.26c) 

Next, we multiply (5.24) by cos 2𝑚𝑥 sin 𝑛𝑦, integrate, and for  𝑟 = 𝑚, 𝑝 = 𝑛,  we get 

           𝑓2(𝑚,𝑛)
(3) = −

10(1+𝜉)2(𝑚𝑛)2 (𝑤(𝑚,𝑛)
(1)

𝑤1(𝑚,2𝑛)
(2)

+�̅�𝑤1(𝑚,2𝑛)
(2)

)−4𝑚2(1+𝜉)2 𝑤2(𝑚,𝑛)
(3)

(4𝑚2+𝑛2𝜉)2
             (5.27a) 

On substituting for 𝑤1(𝑚,𝑛)
(2)

 in (5.27a), we get 

          𝑓2(𝑚,𝑛)
(3) = −Θ11 (Θ5𝑤(𝑚,𝑛)

(1)2 + Θ6�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�+𝑤(𝑚,𝑛)

(1) ) − Θ10𝑤2(𝑚,𝑛)
(3)                           (5.27b) 

where, 

                Θ11 =
10𝐻𝑚2(1+𝜉)2

(4𝑚2+𝑛2𝜉)2
              (5.27c) 

Next, we multiply (5.24) by cos 2𝑚𝑥 cos 3𝑛𝑦, integrate, and for  𝑟 = 𝑚, 𝑝 = 3𝑛,  we get 

          𝑓1(𝑚,𝑛)
(3) =

8𝐻(1+𝜉)2(𝑚𝑛)2𝑤(𝑚,𝑛)
(1)

𝑤1(𝑚,2𝑛)
(2)

−4𝑚2(1+𝜉)2 𝑤1(𝑚,3𝑛)
(3)

(4𝑚2+9𝑛2𝜉)2
              (5.28a) 

On substituting for 𝑤1(2𝑚,2𝑛)
(2)

 in (5.28a), and simplifying,  we get 

        𝑓1(𝑚,3𝑚)
(3) = Θ12𝑤(𝑚,𝑛)

(1) (Θ7𝑤(𝑚,𝑛)
(1)2 + Θ8𝑤(𝑚,𝑛)

(1) ) − Θ13𝑤1(𝑚,3𝑛)
(3)              (5.28b) 

where, 

                Θ12 =
8𝐻(1+𝜉)2(𝑚𝑛)2

(4𝑚2+9𝑛2𝜉)2
 ,         Θ13 =

4(1+𝜉)2𝑚2 

(4𝑚2+9𝑛2𝜉)2
             (5.28c) 

We next multiply (5.24) by cos 2𝑚𝑥 sin 3𝑛𝑦, integrate, and for  𝑟 = 𝑚, 𝑝 = 3𝑛,  we get 

         𝑓2(𝑚,3𝑛)
(3)

=
−5𝐻(1+𝜉)2(𝑚𝑛)2(𝑤(𝑚,𝑛)

(1)
𝑤1(𝑚,2𝑛)
(2)

+�̅�𝑤1(𝑚,2𝑛)
(2)

)−4𝑚2(1+𝜉)2 𝑤2(𝑚,3𝑛)
(3)

(4𝑚2+9𝑛2𝜉)2
            (5.29a) 

On substituting for 𝑤1(𝑚,2𝑛)
(2)

 in (5.29a),  we get 

         𝑓2(𝑚,3𝑚)
(3) = Θ14 (Θ5𝑤(𝑚,𝑛)

(1)2 + Θ6�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�+𝑤(𝑚,𝑛)

(1) ) − Θ13𝑤2(𝑚,3𝑛)
(3)             (5.29b) 

where,    

                  Θ14 =
−5𝐻(1+𝜉)2(𝑚𝑛)2

(4𝑚2+9𝑛2𝜉)2
              (5.29c) 

Next, we multiply (5.24) by cos 4𝑚𝑥 sin 𝑛𝑦, integrate, and for  𝑟 = 2𝑚, 𝑝 = 𝑛,  we get 

   𝑓2(2𝑚,𝑛)
(3)

=
𝐻(1+𝜉)2(𝑚𝑛)2{5(𝑤(𝑚,𝑛)

(1)
𝑤1(𝑚,2𝑛)
(2)

+�̅�𝑤1(2𝑚,2𝑛)
(2)

)+8𝑤(𝑚,𝑛)
(1)

𝑤1(𝑚,2𝑛)
(2)

}−16𝑚2(1+𝜉)2 𝑤2(2𝑚,𝑛)
(3)

(16𝑚2+𝑛2𝜉)2
           (5.30a)  

On substituting for 𝑤1(𝑚,2𝑛)
(2)

 in (5.30a),  we get 

         𝑓2(2𝑚,𝑛)
(3) = Θ15 [5 (Θ5𝑤(𝑚,𝑛)

(1)2 + Θ6�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�+𝑤(𝑚,𝑛)

(1) + 8)] − Θ16𝑤2(2𝑚,𝑛)
(3)            (5.30b) 

where, 

                Θ15 =
𝐻(1+𝜉)2(𝑚𝑛)2

(16𝑚2+9𝑛2𝜉)2
 ,         Θ16 =

16(1+𝜉)2𝑚2 

(16𝑚2+9𝑛2𝜉)2
              (5.30c) 

On multiplying (5.24) by cos 4𝑚𝑥 sin 3𝑛𝑦 and integrating so that for 𝑟 = 2𝑚, 𝑝 = 3𝑛, we get 

       𝑓2(2𝑚,3𝑛)
(3) =

−5𝐻(1+𝜉)2(𝑚𝑛)2(𝑤(𝑚,𝑛)
(1)

𝑤1(𝑚,2𝑛)
(2)

+�̅�𝑤1(𝑚,2𝑛)
(2)

)−16𝑚2(1+𝜉)2 𝑤2(2𝑚,3𝑛)
(3)

(16𝑚2+9𝑛2𝜉)2
                        (5.31a) 

On simplifying (5.31a), we get 
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      𝑓2(2𝑚,3𝑚)
(3) = Θ17 (Θ15𝑤(𝑚,𝑛)

(1)2 + Θ6�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�+𝑤(𝑚,𝑛)

(1) ) − Θ16𝑤2(2𝑚,3𝑛)
(3)            (5.31b) 

where, 

                 Θ17 = −
5𝐻(1+𝜉)2(𝑚𝑛)2

(16𝑚2+9𝑛2𝜉)2
                (5.31c) 

Next, we multiply (5.24) by cos 6𝑚𝑥 cos 𝑛𝑦, integrate, and for  𝑟 = 3𝑚, 𝑝 = 𝑛,  we get 

   𝑓(3𝑚,𝑛)
(3)

= −[
8𝐻(1+𝜉)2(𝑚𝑛)2{(𝑤(𝑚,𝑛)

(1)
𝑤1(2𝑚,2𝑛)
(2)

+�̅�𝑤1(2𝑚,2𝑛)
(2)

)−𝑤(𝑚,𝑛)
(1)

𝑤1(2𝑚,2𝑛)
(2)

}+36𝑚2(1+𝜉)2 𝑤1(3𝑚,𝑛)
(3)

(36𝑚2+𝑛2𝜉)2
]      (5.32a)  

After substituting for 𝑤1(2𝑚,2𝑛)
(2)

 in (5.32a),  we get 

     𝑓1(3𝑚,𝑚)
(3) = −Θ18 [(Θ7𝑤(𝑚,𝑛)

(1)2 + Θ8�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�+2𝑤(𝑚,𝑛)

(1) )] − Θ19𝑤1(3𝑚,𝑛)
(3)             (5.32b) 

where, 

             Θ18 =
8𝐻(1+𝜉)2(𝑚𝑛)2

(36𝑚2+𝑛2𝜉)2
 ,         Θ19 =

36(1+𝜉)2𝑚2 

(36𝑚2+𝑛2𝜉)2
              (5.32c) 

Lastly, we multiply (5.24) by cos 6𝑚𝑥 cos 3𝑛𝑦 and for 𝑟 = 3𝑚, 𝑝 = 3𝑛, we get 

   𝑓1(3𝑚,3𝑛)
(3) =

𝐻(1+𝜉)2(𝑚𝑛)2{4(𝑤(𝑚,𝑛)
(1)

𝑤
1(2𝑚,2𝑛)
(2)

+�̅�𝑤
1(2𝑚,2𝑛)
(2)

)−8𝑤(𝑚,𝑛)
(1)

𝑤
1(2𝑚,2𝑛)
(2)

}−36𝑚2(1+𝜉)2 𝑤1(3𝑚,3𝑛)
(3)

(36𝑚2+9𝑛2𝜉)2
        (5.33a) 

On substituting for 𝑤1(2𝑚,2𝑛)
(2)

 in (5.33a), we get 

      𝑓1(3𝑚,3𝑚)
(3) = 4Θ20 (Θ7𝑤(𝑚,𝑛)

(1)2 + Θ8�̅�𝑤(𝑚,𝑛)
(1) ) (�̅�−𝑤(𝑚,𝑛)

(1) ) − Θ21𝑤1(3𝑚,3𝑛)
(3)              (5.33b) 

where,  

                 Θ20 =
𝐻(1+𝜉)2(𝑚𝑛)2

(36𝑚2+9𝑛2𝜉)2
 ,         Θ21 =

36(1+𝜉)2𝑚2 

(36𝑚2+9𝑛2𝜉)2
                 (5.33c)   

Next, we substitute on the left hand side of (5.25) using (5.20a), thereafter multiply by 

cos 2𝑚𝑥 cos 𝑛𝑦 and note that for 𝑟 = 𝑚, 𝑝 = 𝑛, we get, (without further simplification ) 

   𝑤1(𝑚,𝑛)
(3) =

[
 
 
 
 (
2𝑚𝐴

1+𝜉
)
2
{Θ9𝑤(𝑚,𝑛)

(1)
(Θ7𝑤(𝑚,𝑛)

(1)2
+Θ8�̅�𝑤(𝑚,𝑛)

(1)
)}+𝐻(

𝑚𝑛𝐴

1+𝜉
)
2
{𝐻(

𝑚𝑛𝐴

1+𝜉
)
2
[12(𝑤(𝑚,𝑛)

(1)
𝑓
1(2𝑚,𝑛)
(2)

+𝑤
1(2𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+9�̅�𝑓
1(2𝑚,2𝑛)
(2)

]}

(4𝑚2+𝑛2𝜉)2+Θ10(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−𝑛2𝜉)

]
 
 
 
 

               (5.34) 

We can easily simplify (5.34) by substituting the relevant terms there. 

On multiplying (5.25) by cos 2𝑚𝑥 sin 𝑛𝑦 , we  get  

    𝑤2(𝑚,𝑛)
(3) =

[
 
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2

2
[16(𝑤(𝑚,𝑛)

(1)
𝑓
1(𝑚,2𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+4(𝑤(𝑚,𝑛)
(1)

𝑓
1(𝑚,2𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)

+8�̅�𝑓
1(𝑚,2𝑛)
(2)

]+(
2𝑚𝐴

1+𝜉
)
2
Θ11(Θ5𝑤(𝑚,𝑛)

(1)
+Θ6�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+𝑤(𝑚,𝑛)

(1)
)

4(𝑚2+𝑛2𝜉)2+Θ10(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−𝑛2𝜉)

]
 
 
 
 
 

              (5.35a) 

Further simplification of (5.35a) yields  

     𝑤2(𝑚,𝑛)
(3)

=

[
 
 
 
 
 
−𝐻𝐾(𝜉)(𝑚𝑛)2

2
[20𝑤(𝑚,𝑛)

(1)3 (Θ0Θ5−Θ1−Θ2Θ5)+𝑤(𝑚,𝑛)
(1)2 {20(Θ0Θ6�̅�+Θ0Θ2�̅�−2�̅�Θ1)+8�̅�(Θ1−Θ2Θ5)}

+8�̅�𝑤(𝑚,𝑛)
(1)

(2Θ1�̅�−Θ2Θ6�̅�)]+(
2𝑚𝐴

1+𝜉
)
2
Θ11(Θ5𝑤(𝑚,𝑛)

(1)
+Θ6�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+𝑤(𝑚,𝑛)

(1)
)

(4𝑚2+𝑛2𝜉)2+Θ10(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−𝑛2𝜉)

]
 
 
 
 
 

      (5.35b) 
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 Next, we multiply (5.25) by cos 2𝑚𝑥 cos 3𝑛𝑦, and for  𝑟 = 𝑚, 𝑝 = 3𝑛,  we get 

          𝑤1(𝑚,3𝑛)
(3) =

[
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2[4(𝑤(𝑚,𝑛)

(1)
𝑓
1(𝑚,2𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+7�̅�𝑓
1(𝑚,2𝑛)
(2)

]

−(
2𝑚𝐴

1+𝜉
)
2
{Θ12𝑤(𝑚,𝑛)

(1)
(Θ7𝑤(𝑚,𝑛)

(1)2
+Θ8�̅�𝑤(𝑚,𝑛)

(1)
)}

4(𝑚2+9𝑛2𝜉)2+Θ13(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−9𝑛2𝜉)

]
 
 
 
 

    (5.36) 

   Next, we multiply (5.25) by cos𝑚𝑥 sin 3𝑛𝑦, and for  𝑟 = 𝑚, 𝑝 = 3𝑛,  we get 

     𝑤2(𝑚,3𝑛)
(3) =

[
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2[10(𝑤(𝑚,𝑛)

(1)
𝑓
1(𝑚,2𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+4�̅�𝑓
1(𝑚,2𝑛)
(2)

]

−(
2𝑚𝐴

1+𝜉
)
2
Θ14{(Θ5𝑤(𝑚,𝑛)

(1)2
+Θ6�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+𝑤(𝑚,𝑛)

(1)
)}

4(𝑚2+9𝑛2𝜉)2+Θ13(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−9𝑛2𝜉)

]
 
 
 
 

    (5.37) 

   Next, we multiply (5.25) by cos 4𝑚𝑥 sin 𝑛𝑦, and for  𝑟 = 2𝑚, 𝑝 = 𝑛,  we get 

      𝑤2(2𝑚,𝑛)
(3) =

[
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2[5(𝑤(𝑚,𝑛)

(1)
𝑓
1(𝑚,2𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+2�̅�𝑓
1(𝑚,2𝑛)
(2)

]

−(
2𝑚𝐴

1+𝜉
)
2
[Θ15{(5Θ5𝑤(𝑚,𝑛)

(1)2
+Θ6�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+8+𝑤(𝑚,𝑛)

(1)
)}]

(16𝑚2+𝑛2𝜉)2+Θ16(
2𝑚𝐴

1+𝜉
)
2
−𝜆(16𝛼𝑚2−𝑛2𝜉)

]
 
 
 
 

    (5.38) 

Next, we multiply (5.25) by cos 4𝑚𝑥 sin 3𝑛𝑦, and for  𝑟 = 2𝑚, 𝑝 = 3𝑛,  we get 

     𝑤2(2𝑚,3𝑛)
(3) =

[
 
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2

4
[32(𝑤(𝑚,𝑛)

(1)
𝑓
1(2𝑚,𝑛)
(2)

+𝑤
1(𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+5�̅�𝑓
1(𝑚,2𝑛)
(2)

]

−(
2𝑚𝐴

1+𝜉
)
2
{Θ17(Θ15𝑤(𝑚,𝑛)

(1)2
+Θ6�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+𝑤(𝑚,𝑛)

(1)
)}

(16𝑚2+9𝑛2𝜉)2+Θ16(
4𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−9𝑛2𝜉)

]
 
 
 
 
 

    (5.39) 

Next, we multiply (5.25) by cos 6𝑚𝑥 cos 𝑛𝑦, and for  𝑟 = 3𝑚, 𝑝 = 𝑛,  we get 

       𝑤1(3𝑚,𝑛)
(3) =

[
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2[12(𝑤(𝑚,𝑛)

(1)
𝑓
1(2𝑚,2𝑛)
(2)

+𝑤
1(2𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+9�̅�𝑓
1(2𝑚,2𝑛)
(2)

]

+(
3𝑚𝐴

1+𝜉
)
2
{Θ18(Θ7𝑤(𝑚,𝑛)

(1)2
+Θ8�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�+2𝑤(𝑚,𝑛)

(1)
)}

(36𝑚2+𝑛2𝜉)2+Θ19(
3𝑚𝐴

1+𝜉
)
2
−𝜆(

9𝛼𝑚2

2
−𝑛2𝜉)

]
 
 
 
 

    (5.40) 

Lastly, we multiply (5.25) by cos 6𝑚𝑥 cos 3𝑛𝑦, and for  𝑟 = 3𝑚, 𝑝 = 3𝑛,  we get 

      𝑤2(2𝑚,𝑛)
(3) =

[
 
 
 
 
𝐻𝐾(𝜉)(𝑚𝑛)2[4(𝑤(𝑚,𝑛)

(1)
𝑓
1(2𝑚,3𝑛)
(2)

+𝑤
1(2𝑚,2𝑛)
(2)

𝑓(𝑚,𝑛)
(1)

)+8�̅�𝑓(𝑚,𝑛)
(1)

]

−(
3𝑚𝐴

1+𝜉
)
2
{4Θ20(Θ7𝑤(𝑚,𝑛)

(1)2
+Θ8�̅�𝑤(𝑚,𝑛)

(1)
)(�̅�−𝑤(𝑚,𝑛)

(1)
)}

(36𝑚2+9𝑛2𝜉)2+Θ21(
3𝑚𝐴

1+𝜉
)
2
−𝜆(

9𝛼𝑚2

2
−9𝑛2𝜉)

]
 
 
 
 

    (5.41) 

As a summary so far, we can write the displacement (i.e. eigen buckling modes) and the 

respective Airy stress function as 

           (𝑤
𝑓
) = 𝜖 (

𝑤(𝑚,𝑛)
(1)

𝑓(𝑚,𝑛)
(1) ) (1 − cos 2𝑚𝑥) sin 𝑛𝑦 

                      +𝜖2 [(
𝑤
1(𝑚,𝑛)
(2)

𝑓
1(𝑚,𝑛)
(2) ) (1 − cos 2𝑚𝑥) cos 𝑛𝑦 + (

𝑤
1(𝑚,2𝑛)
(2)

𝑓
1(𝑚,2𝑛)
(2) ) (1 − cos 2𝑚𝑥) cos 2𝑛𝑦]   
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                      +𝜖3 [{(
𝑤
1(𝑚,𝑛)
(3)

𝑓
1(𝑚,𝑛)
(3) ) cos 𝑛𝑦 + (

𝑤
2(𝑚,𝑛)
(2)

𝑓
2(𝑚,𝑛)
(2) ) sin 𝑛𝑦} (1 − cos 2𝑚𝑥) + {(

𝑤
1(𝑚,3𝑛)
(3)

𝑓
1(𝑚,3𝑛)
(3) ) cos 3𝑛𝑦 

                      +(
𝑤
2(𝑚,3𝑛)
(3)

𝑓
2(𝑚,3𝑛)
(3) ) sin 3𝑛𝑦} (1 − cos 2𝑚𝑥) + (

𝑤
2(2𝑚,𝑛)
(3)

𝑓
2(2𝑚,𝑛)
(3) ) (1 − cos 4𝑚𝑥) sin 𝑛𝑦 

                      +(
𝑤
2(2𝑚,3𝑛)
(3)

𝑓
2(2𝑚,3𝑛)
(3) ) (1 − cos 4𝑚𝑥) sin 3𝑛𝑦 + (

𝑤
1(3𝑚,𝑛)
(3)

𝑓
1(3𝑚,𝑛)
(3) ) (1 − cos 6𝑚𝑥) cos 𝑛𝑦 

                       +(
𝑤
1(3𝑚,3𝑛)
(3)

𝑓
1(3𝑚,3𝑛)
(3) ) (1 − cos 6𝑚𝑥) cos 3𝑛𝑦] + ⋯    (5.42) 

 

A diagrammatic representation of the eigen buckling modes can be seen in Figure below: 

                               
                                                                                                   nymxw nm cos)2cos1()3(

),(1   

                                                                                                                                                                                 
                                                                                                                       nymxw nm 3cos)2cos1()3(

)3,(1   

   

                                                                                                                     

                                                                                                              
                                                                                                                        nymxw nm cos)6cos1()3(

),3(1   

                                                    nymxw nm cos)2cos1()2(

),(1                                                                                                                                                 

                                                                                                     nymxw nm 3cos)6cos1()3(

)3,3(1   

                          nymxw nm sin)2cos1()1(

),(                                                                     

 

                        Buckling mode of order ϵ                nymxw nm 2cos)2cos1()1(

)2,(1    

                                                                                                                                 nymxw nm sin)2cos1()3(

),(2 
 

                                                                                                                                                                                                                                                                                                   

nymxw nm 3sin)2cos1()3(

)3,(2                                                       

                                                Buckling modes of order 𝜖2           

                                                                                                                                     
                                                                                                                                     nymxw nm sin)4cos1()3(

),2(2   

      nymxw nm 3sin)4cos1()3(

)3,2(2   

 

 Buckling modes of order 𝜖3                                                                   

  

Figure 1:     The Bifurcation “Tree” 

Showing a diagrammatic representation of the splitting of eigen buckling modes at various orders of 

perturbations and various degrees of nonlinearities. 
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6. STATIC BUCKLING LOAD 

The static buckling load 𝜆𝑆  [9] is determined from the maximization 

                              
𝑑𝜆

𝑑𝑤
= 0    (6.1) 

for the displacement as per equation (5.42). However, the analysis is significantly simplified 

if we take only the buckling modes in the shape of the imperfection. In this respect, the 

displacement becomes 

           𝑤 = 𝜖𝑤(𝑚,𝑛)
(1) (1 − cos 2𝑚𝑥) sin 𝑛𝑦 + 𝜖3𝑤2(𝑚,𝑛)

(3) (1 − cos 2𝑚𝑥) sin 𝑛𝑦 + ⋯   (6.2) 

We note form (6.2) that terms of order 𝜖2 do not contribute in this case. 

 We shall next determine (6.1) at the critical values of 𝑥 and 𝑦 where 𝑤 has a maximum value. 

These critical values are 𝑥𝑎 =
𝜋

2𝑚
 , 𝑦𝑎 =

𝜋

2𝑛
 , where 𝑥𝑎 and 𝑦𝑎  are the critical values of 𝑥 and 

𝑦 respectively.  The value of 𝑤 at these values is  

                𝑤𝑎 = 2𝜖𝑤(𝑚,𝑛)
(1)

+ 2𝜖3𝑤2(𝑚,𝑛)
(3)

+ ⋯    (6.3) 

 As in [9], we shall reverse the series in (6.3) and so we see 

                   𝜖 = 𝑑1𝑤𝑎 + 𝑑3𝑤𝑎
3 +⋯                (6.4a) 

 Meanwhile, we set 

                              𝑤𝑎 = 𝑐1𝜖 + 𝑐3𝜖
3 + ⋯    (6.4b) 

 where,  

                     𝑐1 = 2𝑤(𝑚,𝑛)
(1)

 ,    𝑐3 = 2𝑤2(𝑚,𝑛)
(3)

    (6.4c) 

By substituting (6.4b) into (6.1) and equating the coefficients of powers of orders of ϵ, we 

get 

                    𝑑1 =
1

𝑐1
 ,      𝑑3 = −

𝑐3

𝑐1
4               (6.5a) 

The maximization (6.1) is now easily executed from (6.4a), where 𝑤𝑎 is now being 

substituted for 𝑤 and this yields 

                       𝑑1 + 3𝑑3𝑤𝑎𝑆
2 = 0               (6.5b) 

where  𝑤𝑎𝑆
2  is the value of  𝑤𝑎

2  at static buckling and  

                     𝑤𝑎𝑆
2 =

𝑑1

3𝑑3
                (6.5c) 

On substituting for 𝑑1 and 𝑑3  in (6.5c) and (6.5a), we get 

                     𝑤𝑎𝑆 = √
𝐶1
3

3𝐶3
    (6.6) 

where we have taken the positive value of 𝑤𝑎𝑆 . The static buckling load 𝜆𝑆,  is determined by 

determining (6.4a) at  static buckling load, where 

                       𝜖 = 𝑤𝑎𝑆[𝑑1 + 𝑑3𝑤𝑎
3] + ⋯               (6.7a)  

This yields 

                       𝜖 =
2

3√3
(
𝐶1

𝐶3
)

1

2
               (6.7b) 

Now, the component of 𝐶3 coming from the buckling modes that are in the shape of 

imperfection is from (5.35b) and this yields 
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             𝑤2(𝑚,𝑛)
(3)

=

𝐻

2
(
2𝑚𝐴

1+𝜉
)
2
[20𝑤(𝑚,𝑛)

(1)3 (Θ1+Θ2Θ5−Θ0Θ3)]

(4𝑚2+𝑛2𝜉)2+Θ10(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−𝑛2𝜉)

    (6.8a) 

where, we have substituted for 𝐾(𝜉).  We can further simplify (6.8a) as  

             𝑤2(𝑚,𝑛)
(3)

=
Θ22𝑤(𝑚,𝑛)

(1)3

(4𝑚2+𝑛2𝜉)2+Θ10(
2𝑚𝐴

1+𝜉
)
2
−𝜆(2𝛼𝑚2−𝑛2𝜉)

    (6.8b) 

where, 

                 Θ22 = 10𝐻 (
𝑚𝐴

1+𝜉
)
2
(Θ1 + Θ2Θ5 − Θ0Θ3)    (6.8c) 

and where we have substituted for 𝐾(𝜉). 

On substituting for terms into (6.7b), we get     

                   𝜖 =
2

3√3 𝑤(𝑚,𝑛)
(1) (

𝐵

Θ22
)

1

2
                (6.9a) 

where,  

                 𝐵 = (4𝑚2 + 𝑛2𝜉)2 + Θ10 (
2𝑚𝐴

1+𝜉
)
2

− 𝜆(2𝛼𝑚2 − 𝑛2𝜉)                 (6.9b)  

 We recall that 

              Θ10 = Θ0 = (
2𝑚(1+𝜉)

4𝑚2+𝑛2𝜉
)
2

                 (6.9c) 

On substituting for 𝑤(𝑚,𝑛)
(1)

 in (6.9a), we get 

        [(4𝑚2 + 𝑛2𝜉)2 + Θ10 (
2𝑚𝐴

1+𝜉
)
2
− 𝜆𝑆(2𝛼𝑚

2 − 𝑛2𝜉)]

3

2

=
3√3

2Θ22

1
2

𝜖𝜆𝑆(�̅� + 1)(2𝛼𝑚
2 − 𝑛2𝜉)          (6.10) 

which gives an implicit formula for determining the static buckling load 𝜆𝑆. Hence, Θ22

1

2  serves 

as the imperfection – sensitivity parameter and is such that if Θ22

1

2 > 0 the structure is 

imperfection – sensitive whereas for Θ22

1

2 < 0,  the structure is imperfection – insensitive 

 

7. DISCUSSION OF RESULTS 

We observe from the results so far that the number of buckling modes generated at any stage 

depends on the order of perturbation involved or on the degree of the nonlinearity of the 

equations solved. Thus, at the linear stage (that is equations of order ϵ), there is only one 

buckling mode, namely 𝑤(𝑚,𝑛)
(1)

, whereas at the level of quadratic nonlinearity of the equations, 

(that is equations of order 𝜖2) there are two eigen buckling modes. Similarly, at the level of 

cubic nonlinearity (that is equations of order 𝜖2), there are eight Eigen buckling modes. We 

expect the number of buckling modes to increase further as the degree of nonlinearity of 

equations solved increases, that is, at a higher level perturbations. 

The result in (6.10) is characteristics of all cubic structures [3] of which cylindrical shells are 

typical examples. 
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  Figure2: The graph of static buckling load 𝝀𝒔 against imperfection ϵ, where m=1, n=1, 𝛂=1, A=0.02, 

H=0.02, �̅� = 𝟎. 𝟎𝟎𝟐,  and 𝛏=0.8 .                     

 

8. CONCLUSION 

We have presented an analytical approach in solving a problem that at the best of time, is 

normally solved or treated numerically. We have tacitly assumed that the magnitude of 

imperfection is small compared to small thickness. However, the complexity of the 

perturbation procedure increases with increased order of perturbation and nonlinearity of 

the problem. 
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