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ABSTRACT 

In this article, the tests used to test the suitability of univariate time series models are examined. 

For this purpose, considering the Box-Pierce Q(m), Ljung-Box Q(m), McLeod-Li Q(m), Monti's 

Q(m) and Li-McLeod Q(m) tests, the selected model structure and appropriate sample and the 

performance of the tests to ensure the suitability. In order to compare the tests with each other, 

Monte Carlo simulation method was used to obtain the first (I.) type error results of the tests and 

then the experimental power results and thus the comparison was made. According to this 

simulation study, the first experimental error and experimental power values were taken into 

consideration and the results of the tests were given. 

 

Keywords: Time series, simulation, autocorrelation (ACF) and partial autocorrelation (PACF) 

coefficients, portmanteau test statistics 

 

1. INTRODUCTION 

Time series analysis is one of the most important disciplines used in statistics. Analyzing the data 

in accordance with time series, graphically expressing and modeling them is a task in itself. This 

issue, which is being used more and more widely every day, is especially preferred for the 

analysis and interpretation of time-based economy and business data. 

 

When working in time series, model determination and the suitability of the model to the data are 

of great importance. Because a mis-determined model can have very different results. In this 

sense, the conformity of the model to the data must be tested immediately after the model 

determination stage. There are many tests for different model structures developed for this 

purpose. 

 

The main theme of this study is to examine how the existing test methods will reveal the 

situation if different model structures are considered. The aim here; For univariate linear time 

series models, the tests in the modeling process are examined and compared in terms of their 

performance in determining whether the model is suitable for data. In this way, in addition to 

being a resource for researchers by examining the various test methods in the literature together 

in a specific study at the same time, it is to determine the comparable results of tests in different 

situations. 

 

There are different models in time series: univariate and multivariable autoregressive moving 

average (ARMA) models, threshold type time series models, bilinear models, exponential 

autoregressive models, conditional autoregressive heteroscedasticity (ARCH) models. For these 
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different models, the tests used to test whether the model is suitable for data are generally 

classified under portmanteau test statistics. 

 

2. UNIVARIATE TIME SERIES AND MODELING 

The time series is a collection of random variables, which are measurements of variables with 

data obtained in chronological order over time. A time series is generally shown in the format Zt, 

t = 1,…, n, with n sample sizes. Thus, t-th observed data over time is expressed by Zt [4]. 

 

In univariate time series analysis, there is a dependence on past observation values since it is 

used to make future forecasts using past observation values. If so, there are some assumptions on 

which the univariate time series method is based. Accordingly, it is assumed that the elements of 

the time series present in a time series will remain the same in the future. Because of this 

assumption, it is provided to obtain the estimated values for the next period based on the 

previous period's agenda values. This method aims to estimate the future values of the series by 

separating the elements that make up the time series from each other and random elements. 

These methods are adapted to discrete time series consisting of observation values obtained at 

equal time intervals [4; 17]. 

 

Now, the properties and models of univariate general linear time series will be briefly introduced 

below. 

 

2.1. Autocovariance, Autocorrelation and Partial Autocorrelation Coefficients 

Three of the most common concepts in time series studies are autocovariance, autocorrelation 

and partial autocorrelation functions. They have properties that characterize the time series. 

Accordingly, autocovariance function, 

 

Sample autocovariance function with the mean of a process (μ = E (Zt): 
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It is also used in the following notation: 
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(2.2) 

 It is expressed as. 

 

The autocorrelation function returns the relationships between a time series and lagged series of 

that time series. For example; Autocorrelation between Zt with Zt+k refers to the relationship 

between the time series pairs (Z1, Z1+k), (Z2, Z2+k),…,(Zt-k, ZT). This is indicated by ρk and is the 

autocorrelation of the k. lagged. The autocorrelation coefficient values of all lags constitute the 

autocorrelation function. Sample autocorrelation function, 
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 shown in the form. Standard errors of sample autocorrelation 
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or briefly, 
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(2.6) 

As is known, the correlation coefficient (ρ) takes values between -1 and +1. Since the 

autocorrelation coefficient expresses the relationship between time series, it takes values between 

-1 and +1 [20]. 

 

The partial correlation coefficient, as known from the regression, gives the relationship between 

the two variables while the other variables are constant. The partial autocorrelation coefficient is, 

again from a similar perspective, the relationship between the time series and the time series of 

the respective lag, ignoring the effects of other lagged series. Sample partial autocorrelation 

function; 
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as shown. Partial autocorrelation coefficient values of all lagged constitute the partial 

autocorrelation function [20]. 

 

2.2. Univariate General Stationary Models 

As is known, in order for any time series to be stationary, the mean, variance, covariance and 

higher order moments must be constant over time. In univariate stationary time series, 

autoregressive (AR), moving average (MA) and autoregressive-moving average (ARMA) 

models are called linear stationary models. If the model is not stationary, the series must be 

stationary [4]. The models are summarized below. 
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Autoregressive (AR) models: If any time series can be expressed in terms of lags, this model is 

called the autoregressive (AR) model. AR models are named according to the number of past 

periods they contain. If there is only one observational AR model from the previous period, it is 

called “first order”, and if p is related to past observation value, it is called “p-th order AR 

model. 

 

The general expression of the AR(p) model is as follows; 

 

 tptptt Azzz    ...11                                                                                                      

(2.10) 

or 

 ttp AzB )(                                                                                                                              

(2.11) 

 

Here, the values Zt, Zt-1,..., Zt-p   are obtained by taking the difference of  from each observation 

value (Zt = Yt - to represent the original sequence Yt). 1, 2 ,..., p  are unknown but estimated 

parameters of the model. p is the degree of the model and At is the white noise process with a 

mean of zero and a variance of 2
. It can be written as follows, 

 

BZt = Zt-1, B
2
Zt = Zt-2, ... , B

p
Zt = Zt-p                                                                                                          

(2.12) 

                                                       

including 

 

Zt=(1B+2B
2
+...+pB

p
)Zt+At                                                                                                                    

(2.13) 

                                                        

This way of writing helps to determine whether the models meet the stationary condition. To be 

stationary, the roots of  0)( B  must lie outside of the unit circle. The AR processes are useful 

in describing situations in which the present value of a time series depends on its preceding 

values plus a random shock [20] [ 9]. 

 

Moving average (MA) model: The models in which any time series is expressed as a linear 

combination of the error term of the same period and the error terms of a certain number of past 

periods are the moving average models. Unlike AR model, moving average model is obtained by 

using current and past error terms instead of past observation values. Moving average models are 

also determined by the number of past error terms they contain. If MA model is connected to 

only one error term from the previous period, it is called “first order” and if  MA model is 

connected to past q error terms, it is called “q-th order” MA model. 

 

The general expression of the MA(q) model can be written as follows. 

qtqtttt AAAAZ    ...2211                                                                                                       

(2.14) 

Here, q ,...,, 21  are the parameters of the model.  
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(2.15) 

is written. 

 

Here, 1, 2 ,..., q are the estimated parameters of the model. q represents the degree of MA 

model. MA models always stationary. This moving average process is invertible if the roots of  

(B)=0 lie outside of the unit circle. MA(q) is given by, 

t

q

qt ABBZ )...1( 1                                                                                                             

(2.16) 

 

Autoregressive-moving average(ARMA) models: The general mixed model of AR and MA 

models of stationary time series is the ARMA model. That is, ARMA(p,q) is combination of 

AR(p) and MA(q). In these models, there is a linear combination of the terms of observation, a 

certain number of observations, and errors before any period of time. The degree of the model is 

determined by past observation values (p) and past error values (q). The ARMA(p,q) model can 

generally be written as follows: 

Zt = 1Zt-1 + 2Zt-2 +...+ pZt-p + At - 1At-1 - ... - qAt-q                                                             

(2.17a) 

or 

Zt - 1Zt-1 - 2Zt-2 -...- pZt-p  = At  - 1At-1 -...- qAt-q                                                               

(2.18b) 

(2.17a) and (2.18b) the meanings of the notations in the equations are as stated above. 

Here p ,...,, 21   and q ,...,, 21   are the parameters. ARMA(p,q) is given by, 

 tt ABZB )()(                                                                                                                  (2.19) 

Where (B)and (B) are polynomials of p and q degrees, respectively. These; 

(B)=1-1B-2B
2
-...-pB

p
                                                                                                                          

(2.20) 

(B)=1-1B-2B
2
-...-qB

q
                                                                                                                             

(2.21) 

 

They are expressed as. ARMA(p, q) model; for stationarity, the roots of  0)( B  must lie 

outside of the unit circle and for invertibility, the roots of  0)( B  must lie outside of the unit 

circle. The availability conditions of stationarity and invertibility should be considered together 

[20]. 

 

2.3. Univariate Non-Stationary Linear Models 

Time series which is encounter in real life are often not stable. The stability of these series is 

disrupted by trend, seasonal and conjuncture fluctuations and random events. For stationarity, 

these factors must be identified and eliminated beforehand, in short, a non-stationary time series 

should be converted to stationary. This can be done by examining the ACF (autocorrelation 

function) and PACF (partial autocorrelation function) of the sequence [4] or by applying the unit 

root test and taking the appropriate degree differences of the series [8]. 
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The degree of autoregressive parameter is p, the degree of the moving average parameter is q and 

d is the number of differences received, this model is called the autoregressive integrated moving 

average model and is called ARIMA (p,d,q). General ARIMA(p,d,q) model, 

 )(Bp  and )(Bq as defined above: 

tqt

d

p ABZBB  )()1)(( 0                                                                                         (2.22) 

 There is no significant contribution here that is )(Bp  , )(Bq . 0  parameter d = 0 and d> 0 

have very different roles. If d = 0, the process is stationarity, and 0 is associated with the mean 

of the process as )...1( 10 p  . However, if 1d  than 0  is called the deterministic 

trend term. ARIMA(p,d,q) expression 

 qtqttptpttt AAAxxxx    ...... 112211                                        (2.23) 

including; 

t

d

t zx        :differenced series;  : difference operator; d : degree of difference 

1 tttt zzxz                                                                                                                (2.24) 

is defined as [20]; 

 

2.4. Modeling Process 

The first thing to do in the modeling process in a time series is to draw the graphs of the 

sequences. If the graph tends to increase or decrease continuously, it can be said that the 

sequence is not stationary. But this can lead to some misconceptions and unhealthy decisions. 

Because at first glance, stationarity process may show some changes over time. One way to 

detect stationarity in time series is to look at the autocorrelation (ACF) and partial 

autocorrelation (PACF) graphs of the series. Only stationary process lead to statistically 

significant ACF and PACF. Non-stationary series must therefore be converted to stationary 

arrays by applying appropriate difference-taking methods. 

 

Which model the data refers to can be said by looking at the graphical behavior of ACF and 

PACF. Accordingly, oscillating reduction of ACF or PACF indicates AR or MA processes. If 

both (ACF and PACF) have oscillating drops, this indicates a mixed ARMA process. Further, by 

the number of autocorrelations and / or partial autocorrelations of non-zero significance, the 

value of the coefficient p for the AR scheme is determined from the PACF structure and the 

value of the coefficient q for the MA scheme is determined from the ACF structure. If the 

roughly appropriate model is of MA(q) type, the degree of this model is determined by using 

autocorrelation coefficients. For the ARMA(p,q) model, autocorrelation and partial 

autocorrelation coefficients are used to determine p and q degrees. In this case, as a temporary 

model; One suitable model AR(p), MA(q) and ARMA(p,q) can be detected [8] [10] [1]. 

 

If the autocorrelation coefficients do not tend to exponentially approach zero, then there is a non-

stationary series. In other words, if the coefficients decrease slowly exponentially, there is a non-

stationary state. This series needs to be stationarity for analysis. [4]. 

 

In univariate time series, the parameters are estimated after determining the degree of the model 

at the modeling stage. Parameter estimation can generally be considered in three different 

headings; moments method, maximum likelihood method and the least known squares method. 
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After completing the parameter estimations of the temporary model from the modeling stages, 

the suitability of this model to the data is tested by using the residual terms. So at this stage, it is 

examined whether the obtained model is suitable or not. The examination of the suitability of the 

model is an examination of the whole model [5] [4] [20]. 

 

 3. TESTING THE COMPATIBILITY OF THE MODEL IN UNIVARIATE VARIABLE 

TIME SERIES 

One of the most important stages of model building is to be able to identify it correctly. In 

particular, it is concerned whether the residues of the predicted model are white noise or not. 

That is to say, which time series model fits at hand. The first choice for this is to look at the ACF 

and PACF graphs other than the graphs of the sequences themselves. The graph shows the delays 

of the ACF and PACF. However, these graphs also contribute to providing information about 

stasis structures. The second preference is to establish a test statistic to test the null (H0) 

hypothesis where the residues m are equal to zero at m lag. In particular, it may be not only 

stationary, but also non-stationary structures. These tests can be applied separately to check the 

non-stationary on average and non-stationary on variance [2]. 

 

The test statistic used in the second approach is expressed as the Portmanteau statistic. It is worth 

mentioning some Portmanteau statistics here. In addition to the original Box-Pierce (1970) and 

modified Ljung-Box (1986) Portmanteau statistics, there are also new Portmanteau statistics 

available. In these tests, the null hypothesis is tested whether autocorrelation or partial 

autocorrelation coefficients are significant [3]. 

 

 

3.1. Box-Pierce Test Statistics 

This test statistic was proposed by Box-Pierce (1970) in order to test the suitability of the data to 

the model in the time series modeling process. Portmanteau test statistics use autocorrelation of 

residuals and partial autocorrelation coefficients of residuals. Autocorrelation coefficient of 

residuals; 
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is expressed as. If the model is sufficient and nm, it is the expectation as orrr m  ....21 . 

Therefore, the adequacy of the model is based on the importance of kr  [2]. 

The Box-Pierce test statistic described here is a test statistic based on the use of the 

autocorrelation coefficient of residuals. 

 

3.2. Ljung-Box Test Statistics 

Box and Pierce (19709 proposed a test statistic based on the autocorrelation coefficient of 

residuals as mentioned above. The QBP statistic was shown to distributed asymptotic chi-square 

with the degree of freedom of m-p-q if the model is appropriate and m>0. In relation to this 

statistic, discussions have been put forward by researchers working on it in the following years. 
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Thereupon, some scientists proposed to make changes in this test statistic and made studies in 

this direction. 

Ljung and Box (1978) and Prothero and Wallis (1976) proposed the use of the modified Q 

statistic and derived the following test statistic, 

)/()2(
1

2 knrnnQ
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(3.2) 

QLB,  has a limited sample distribution  that  
2

qpm  is much closer than. This form of QBP  

statistic is preferred by some practitioners, which is referred to as Ljung-Box or Ljung-Box-

Pierce statistics. The reason for modification is from  )}2(/)()(  nnknrVar k  . That is, QLB 

is obtained in particular by correcting each of the autocorrelation coefficients of the residuals ( kr

) in the QBP with its asymptotic variance. Davies, Triggs and Newbold (1977) showed that the 

variance of QLB was significantly greater than the m-p-q degree of freedom and chi-square 

distribution, which was 2(m-p-q) [13]. 

 

3.3. Li-McLeod Test Statistics 

This test statistic is another modification of the Box-Pierce Q statistic. Li and McLeod (1981), 

while considering changes to the known Box-Pierce Q(m) test statistic, propose to examine the 

expected value of this test statistic. Accordingly, Li and McLeod (1981), with the idea that the 

change in the expected value will create a significant deviation in test statistics, 
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proposed change. When Box-Pierce Q (m) Portmanteau test statistic is replaced, 
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It has proved to be easier than Box-Pierce Q Portmanteau statistics in terms of application and 

programming [2]. 

 

3.4. McLeod-Li Test Statistics 

This test method was proposed by McLeod and Li (1983). The general approach here is to use 

squared residual autocorrelations to control the modeling process based on the assumption of the 

linear ARMA model. m lagged squared residual autocorrelations, 

                                                                                             

(3.4) 

is expressed as. Here, . In this section, it is worth mentioning the distribution of 

squared residual autocorrelations. QML statistics 
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(3.5) 

 

4. SIMULATION STUDY 

4.1. Simulation Plan 

Box-Pierce Q(m), Ljung-Box Q(m), Monti's Q(m), Li-McLeod Q(m) tests are compared using 

Monte Carlo simulation method, considering different situations. The main purpose is to test the 

null hypothesis whether the model is suitable for the data. Assume that there are different 

situations in the data production process. Accordingly, data is produced under the assumption 

that the appropriate model is the AR(1) model. Considering these situations, a simulation study 

was performed and experimental first type error and experimental power results were obtained 

for each test. 10000 experiments are conducted in the simulation study. 

 

4.2. Experimental Results 

Experimental first (I.) type error (α) results: In this section, data are generated in 10000 trials 

using the Monte Carlo simulation method from the AR(1) model and compared for the five test 

methods that indicate the suitability of each model over these data. The way of calculating 

experimental first-type error (α) results: While the 0H  hypothesis is known to be correct, the 

mean of the autocorrelation coefficient is zero(0), the variance is one(1) and the standard Normal 

distribution is different for each test in order to find the rate of rejection that is actually correct 

for each test. For each combination of varying lag and parameter values, the sample selection is 

repeated 10000 times and the number of rejecting the  0H  hypothesis is obtained by dividing this 

number by 10000. The nominal first type error is taken as α=0.05. First type error (α) results 

obtained by this method are given in the tables below. 

 

Model AR (1): 

In this section, different autoregressive parameters are considered and using the Monte Carlo 

simulation method for four AR(1) models, Box-Pierce Q(m), Ljung-Box Q(m), McLeod-Li Q 

(m), Monti's Q(m) and Li-McLeod Q(m) tests, the sample volume was taken as n=100 and 

experimental first type error (α) results were obtained. Here are the models used in data 

generation: 

Model-1:  

Model-2:  

Model-3:  

Model-4:   

Experimental α results obtained for each test using these models are given in Table 4.1 for 

sample volume n=100. 

 

Table 4.1. For n=100, when the model is AR(1) in 10000 trials Box-Pierce Q(m), Ljung-Box 

Q(m), McLeod-Li Q(m), Monti's Q(m) and Li-McLeod Q(m) tests experimental first type error 

(α) results 
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Autoregressive 

Parameter 
lag 

   m=2 m=3 m=5 m=10 

Box-Pierce Q(m) 

0.20 0.050 0.050 0.050 0.050 

0.50 0.056 0.051 0.049 0.049 

0.70 0.078 0.069 0.065 0.051 

0.99 0.132 0.098 0.075 0.064 

Ljung-Box Q(m) 

0.20 0.051 0.048 0.048 0.050 

0.50 0.052 0.050 0.051 0.054 

0.70 0.080 0.055 0.054 0.058 

0.99 0.129 0.094 0.072 0.068 

McLeod-Li Q(m) 

0.20 0.045 0.044 0.046 0.049 

0.50 0.050 0.049 0.049 0.055 

0.70 0.075 0.050 0.052 0.056 

0.99 0.129 0.082 0.066 0.065 

Monti's Q(m) 

0.20 0.050 0.050 0.049 0.051 

0.50 0.051 0.050 0.050 0.052 

0.70 0.079 0.057 0.055 0.054 

0.99 0.119 0.078 0.079 0.065 

Li-McLeod Q(m) 

0.20 0.049 0.049 0.048 0.048 

0.50 0.051 0.048 0.047 0.046 

0.70 0.082 0.052 0.051 0.050 

0.99 0.120 0.089 0.081 0.063 

 

According to Table 4.1; When the sample volume is n 100, it is observed that the experimental 

results of the tests are compared for the AR(1) model. According to this; When the 

autoregressive parameter value is ≤0.70, the model is considered to be appropriate for all lag 

counts at the significance level determined. This is provided for all tests. 

 

When the autoregressive parameter is =0.99, it is clear that the experimental results obtained in 

cases where the number of delays are small have deviated considerably from the nominal level. 
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Therefore, the ability of tests to approach acceptable levels depends on the increasing number of 

delays. 

 

Experimental power (1-β) results: In this section, firstly, Monte Carlo simulation method is 

used to generate data for 10000 trials, which is assumed to be appropriate model, then power 

results are obtained for five different test methods for different nine(9) models. The way of 

calculating the experimental power (1-β) results is: when the hypothesis is known to be incorrect, 

in order to find the rate of rejection of the hypothesis that is actually incorrect for each test, after 

generating the data for the appropriate model, the power is compared to the different models 

discussed in order to compare the tests in terms of power. results are obtained. Here, for 

comparison, the power results of the tests are obtained for different sample volumes and different 

lag numbers in order to see the effect of different situations. 

 

Again, from a similar point of view, AR(1) was used as the appropriate model and power results 

were obtained. Therefore, the performance of the tests in different situations was investigated. 

 

Suitable model AR(1): 

 

In this section, when the appropriate model is the AR(1) model (ie, obtained from the data 

generation model), power results are obtained in 10000 trials with Monte Carlo Simulation 

method for the following models. Here the nominal first type error is taken as α = 0.05. 

 

Model-1: 140.0  ttt aaz  

Model-2: 180.0  ttt aaz  

Model-3: 21 30.060.0   tttt aaaz  

Model-4: tttt azzz   21 30.010.0  

Model-5: 11 40.070.0   tttt aazz  

Model-6: 11 90.070.0   tttt aazz  

Model-7: 211 30.060.040.0   ttttt aaazz  

Model-8: ttttt aazzz   121 50.020.070.0  

Model-9: tttttt aaazzz   2121 30.070.040.090.0  

 

 

Table 4.2. When the appropriate model is AR(1) in 10000 trials for n 100, Box-Pierce Q(m), 

Ljung-Box Q(m), McLeod-Li Q(m), Monti's Q(m) and Li -McLeod Q(m) tests experimental 

power results (α=0.05, m=10) 

Model Φ Φ θ θ 

Box-Pierce 

Q(m) 

Ljung-Box 

Q(m) 

McLeod-Li 

Q(m) 

Monti's 

Q(m) 

Li-McLeod 

Q(m) 

1  - -  0.40 -  0.39 0.40 0.36 0.44 0.41 

2  - -  0.80 -  0.76 0.82 0.74 0.84 0.81 
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3  - -  0.60 0.30 0.79 0.83 0.77 0.86 0.82 

4 0.10 0.30  -  - 0.42 0.45 0.43 0.42 0.44 

5 0.70 -  0.40  - 0.56 0.55 0.49 0.56 0.54 

6 0.70 -  0.90  - 0.94 0.96 0.90 0.98 0.95 

7 0.40 -  0.60 0.30 0.82 0.86 0.83 0.91 0.85 

8 0.70 0.20 0.50  - 0.51 0.50 0.46 0.53 0.52 

9 0.90 0.40 0.70 0.30 0.71 0.69 0.65 0.75 0.73 

 

According to Table 4.2; When the sample volume is n=100, the experimental power results of 

five test methods for nine predetermined time series models are given as a result of Monte Carlo 

simulation study conducted with 10000 experiments under the assumption that the appropriate 

model is the AR(1) model. Almost all of the results obtained here seem to be meaningful when 

considering the power values, but it is observed that the tests show a variable structure for these 

different situations. Although these different situations arise from the model structures, the 

selected sample volume and the number of lag are other factors affecting the results obtained. 

 

According to experimental power results obtained for Model-1, not all tests are very strong 

compared to other models. Looking at Model-2, it is observed that the power increases with the 

increase of the moving average parameter. According to the experimental power results, Monti’s 

Q(m) test is more powerful. The same applies to Model-3. However, when the Model-4 is 

examined, it is observed that the value of the experimental power results decreased. 

 

In Model-5 and Model-6, results were obtained for different parameters of ARMA(1,1) time 

series model. Although Model-5 is not very strong, it is observed that the value of experimental 

power increases when the parameter value increases in Model-6. Similarly, while a decrease in 

the value of experimental power obtained in Model-8 is observed, it can be said that the results 

obtained in Model-7 and Model-9 are significant. 

 

 

5. CONCLUSION 

In this article, the tests used to test the suitability of univariate time series models are examined. 

Among the tests used in the literature, Box-Pierce Q(m), Ljung-Box Q(m), McLeod-Li Q(m), 

Monti’s Q(m) and Li-McLeod Q(m) tests were taken into consideration. Simulation studies were 

conducted to evaluate the performance of these tests in terms of ensuring compliance with the 

selected model structures. In order to compare the tests with each other, Monte Carlo simulation 

method was used to obtain the first (I.) type error (α) results of the tests and then the results of 

experimental power (1-β) and the comparison was aimed. 
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In order to obtain the experimental first (I.) type error (α) results of the tests; primarily, the 

AR(1) model is taken as an example. If the different situations of this model are taken into 

consideration, the experimental results of the five test methods are given together so that the tests 

can be compared with each other more easily. In order to evaluate the results of experimental 

first (I.) type error (α) obtained for these tests, test methods, related parameters in terms of 

models and delay numbers were examined. Accordingly, it has been demonstrated how the tests 

differ according to each other in terms of differences in parameters or parameters, number of 

delays and sample volume. In this evaluation, (I.) type error (α) was taken as 0.05. Further; tests 

were compared in terms of their strength. For this purpose, experimental power results were 

obtained for various time series models under the assumption of the appropriate model. 
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