

Choosing the Appropriate Cloud Architecture for

Modern Applications

Mehmet Altug AKGUL

Abstract- Modern application development and deployment

are generally based on cloud architecture infrastructure that

provides flexibility, scalability and cost efficiency. This article

provides research to help users choose the best cloud

infrastructure architecture for modern applications.

Examines the key elements, advantages and best practices of

cloud architecture, focusing on cost efficiency, scalability and

flexibility. The use of microservices architecture, continuous

integration and deployment, and best practices and the need

for separation of applications are also discussed in this article.

Additionally, attention is drawn to the difficulties and

important points that should be considered when choosing the

best architecture. These include weighing trade-offs,

addressing infrastructure complexity, and resolving specific

challenges presented by cloud-native applications. In both

individual and corporate elections, different approaches

should be evaluated and the best decision should be made.

Index Terms- cloud, architecture, information technologies,

microservices, infrastructure

I. INTRODUCTION

his article includes a research on which infrastructure

approach would be better. Nowadays, not only how an

application works, but also the architecture behind the application

has become extremely important. Years ago, while creating a

monolithic application and focusing on the result, today the

application development process has become a process that needs

to be evaluated from end to end. Many different approaches and

areas of expertise have emerged in this field. For example, the

DevOps field is one of these fields. Because, as important as

developing an application is, it is also important that it receives

updates without any interruption and that large development teams

develop different applications at different times to create an entire

application. In fact, this is basically why microservice architecture

is implemented in large teams. Having dozens of teams working

on a single monolithic application can lead to organizational

confusion. Maintaining and updating microservices created by

such different teams can be difficult. That's why the 'cloud-native'

approach has emerged. With cloud-native applications determined

by CNCF, containerized applications can be deployed

independently of the infrastructure.

II. CLOUD APPROACHES

Before asking the question of what cloud architecture is, we need

to understand what cloud means. To put it simply, it means using

an infrastructure that is not yours, that is, renting it in different

ways, without investing in physical infrastructure. In a traditional

IT infrastructure, that is, on-premise architectures, the institution

has its own data center and in this data center, both the

management of the servers, the network and management of other

hardware elements is provided. In addition, the institution should

also manage issues such as air conditioning of the data center,

protection against natural disasters in terms of disaster recovery,

and redundancy of the network system and electrical grid. This

naturally means the cost of human resources and hardware

infrastructure. The increase in network speeds and the

diversification of public cloud providers and their offering of

product ranges in different types of services have enabled cloud

architectures to become widespread. A cloud provider, with its

availability zones and regions in many different parts of the world,

allows you to deploy applications anywhere in the world,

regardless of location. This gives all individual and corporate

users, no matter how small or large, a chance to compete.

However, regulated sectors and GDPR compliance issues mostly

worry large enterprise-level companies about cloud use. Because

storing the data in a different data center in a different country

instead of storing it in an on-premise environment creates the

perception that the data is in someone else's hands. For this reason,

for many years, enterprises have kept their distance from the cloud

or contented themselves with watching it from afar. However, in

recent years, a hybrid cloud approach has emerged, in which we

can use on-premise architecture, that is, private cloud and public

cloud together. The main reason for this is to keep the applications

and data I want in an on-premise environment, but to benefit from

the innovative features of cloud services wherever desired.

This approach has been widely adopted, especially by companies

in the banking and finance field, and almost the entire fintech

sector has started to work on how to transition their existing

systems to hybrid architecture by establishing their own cloud

teams. While data and services where confidentiality is at the

forefront, such as customer and account information, are located

in the private cloud of organizations, after the microservice

transformation, most of the applications that are not blocked by

GDPR can be run on public cloud services. This actually provides

an advantage to large companies in terms of infrastructure costs.

Because the biggest advantage of the cloud is that it is actually

scalable. In a traditional infrastructure, the scalability limit is the

maximum capacity of your data center. However, scalability in

cloud services can be considered unlimited. In particular, storage

solutions are limitless.

T

IEEE-SEM, Volume 12, Issue 2, February 2024
ISSN 2320-9151 24

Copyright © 2024 IEEE-SEM Publications

IEEESEM

III. ARCHITECTURE TYPES

As we have always stated in the cloud field, there is no single truth.

Because the established structure and architecture varies

according to the scenario to be realized. In some cases, we may

need to deploy a monolithic architecture on the cloud, but modern

applications are now rapidly transitioning towards microservice

architecture. In particular, the emergence of container

technologies and infrastructure-independent applications has led

to a rapid move away from monolithic applications. Of course,

there are intermediate approaches between microservice

architecture and monolithic architecture such as modular

monolithic. The emergence of the concept of "serverless" with the

As a Service approach has led to deploying only the functions in

the cloud, not the entire end-to-end applications, thus saving time

by developing much faster. If we think cumulatively, there will

definitely be systems where all these approaches are used together.

These systems are examples of hybrid architecture approach. [1]

Figure 1: Monolithic and Microservices Architecture

In fact, when we look at traditional systems -we call these systems

pre-cloud systems because the microservice approach became

popular with the cloud- we see that most of the software is almost

a monolith-like applications consisting of a single application and

a single database running on a single server and server cluster.

These applications are developed on a large repository and even a

single change affects most parts of the system. Maintaining,

updating and debugging the application can be quite difficult.

Additionally, since the system grows vertically, performance

problems and security risks are very common. These types of

applications are ideal for simple and small applications that do not

require frequent changes or high availability.

However, when we look at the microservices architecture,

applications consist of many different sub-applications that

communicate with each other through interfaces that we call APIs.

It provides a very organizationally relaxing development process

for modern application development and modern software teams.

Hundreds of different teams can independently develop hundreds

of different services and merge them into a single application. This

allows us to move away from confusion and chaos and only

improve on the determined target. Each service is responsible for

its own function or domain. These services can be quickly

deployed and scaled as needed. Each main service has its own

database, which allows databases to grow distributed horizontally.

It is very comfortable in terms of easy updating, flexibility and

testability. It is a very useful architectural approach for complex,

dynamic and very large applications that require high availability

and scalability.

There is also a modular monolithic architecture, in which you

create different services like in microservice, but you still connect

them all to a single database. This is the type of architecture that

is most confused with microservice architecture. However, in

order to have a microservice architecture, databases must be

separated from each other. The disadvantage here is that a single

database grows vertically and becomes difficult to maintain.

Serverless architectures provide an ideal infrastructure for "small

applications that do a single job" that have emerged in the sector

in recent years. So, what is serverless? In fact, it is an approach

that only allows developing applications on a function-based basis

without managing the infrastructure and servers. Of course, there

are servers in the background, so as the name suggests,

development is not possible without a server, but instead of giving

the management effort to the infrastructure, you can design

applications in a more atomic structure and thus provide rapid

development in transaction-based systems or applications that

perform a single task. The cloud service provider manages the

server on which your application runs, scales it, monitors its

security and performance, and charges only for the resources you

use. This provides you with lower costs, faster development and

easier maintenance. It is especially ideal for applications that are

not too complex in terms of business logic, are stateless, and have

a short lifecycle. The best thing about these systems is that you

have the opportunity to trigger different cloud services with a

serverless API that you open and you can set up highly automated

systems with this trigger mechanism.

Figure 2: Serverless Architecture

Finally, we come to the hybrid architecture approach, as the name

suggests, it is an approach to create a hybrid design by using

different architectural approaches together to benefit from the

strengths and minimize the weak features. For example, we can

develop different types of applications in different data centers in

different locations, and one is a monolithic application and the

other is written with a microservice. We can combine these with a

gateway and then create a serverless system on the cloud

according to needs. This triple system means creating a large

application by using different architectures together and applying

hybrid architecture. In fact, the most commonly used architecture

type today is hybrid architecture, because as applications grow,

they begin to consist of multi-layered and discrete structures.

IEEE-SEM, Volume 12, Issue 2, February 2024
ISSN 2320-9151 25

Copyright © 2024 IEEE-SEM Publications

IEEESEM

IV. ARCHITECTURE TYPES

Deploying and updating applications is often a difficult process

for both developers and users because some problems such as

interruptions and access problems arise during the updating and

maintenance of applications. It is at this point that the concept of

container comes into our lives. In fact, most people are familiar

with virtual machines. What do virtual machines offer us? It

provides a place where we can install and run different operating

systems in isolated environments. So, we can manage and scale as

many virtual machines as we want. The container approach allows

us to run applications in independent container environments, just

like a virtual machine, and to distribute them quickly.

While it has been possible to isolate processes since 1979,

everything changed completely with the emergence of Docker in

2013. Now you could quickly containerize your applications and

distribute them quickly. Basically, you choose which operating

system your application will use in a container config file, then

specify which commands and what operations it should perform

after the operating system installation, and place your application

into a ready-to-use container environment. Thus, the person who

installed this container could start using the applications very

quickly, without any settings or minimal changes. This

convenience, especially in scalable systems, has completely

changed the game. Of course, since managing these containers one

by one would be a very difficult process, container orchestration

applications began to emerge. Kubernetes is one of these

applications. In cases where the network load increases, instead of

scaling the virtual machines, declaratively telling and monitoring

the operations to be performed by an orchestration tool such as

Kubernetes has made the systemic processes much easier. Thus,

highly accessible, easy-to-maintain, scalable, fast-deployable,

self-healing systems can be built.

Figure 3 Basic Container Architecture

If we look at container technologies, we can give examples of

popular applications such as Docker, Containerd, Podman.

Kubernetes has now started using Containerd as the container

runtime by default. Applications such as Kubernetes, Docker

Swarm, Apache Mesos, OpenShift, Nomad can be given as

examples to orchestrate these containers. Many open-source and

licensed applications based on Kubernetes are also available in the

market. We packaged our applications, isolated them from each

other by placing them in containers, and then managed these

containers. Now it's time for maintenance and delivery. In fact, the

DevOps culture welcomes us here too. If you ask what DevOps is,

it is an approach that will cover the entire software development

life cycle. It is the abbreviation of the words Development

Operations. While developing an application, different teams

make different updates and improvements. They keep these

developments in a common version control system. During the life

cycle, these updates are regularly received from the version

control system and deployed to the production environment.

We call this process the CI/CD process. Its definition is

Continuous Integration and Continuous Delivery/Continuous

Deployment. A pipeline is set up and in case of a possible software

update, the codes taken from the repository are first analyzed for

static code, then built and put into testing. If all the rules are

successful, the release phase is reached and deployment takes

place. Afterwards, it is necessary to carry out monitoring

operations and continue this cycle continuously. The most

important stage of DevOps is this cycle. Deployment is generally

stored in the registry as the container images we explained at the

beginning, and these current applications are kept running with

container orchestration. In fact, we have summarized the process

from the development phase to the delivery phase to the user.

Figure 4 CI/CD Process

V. CLOUD NATIVE

We have moved from traditional software development and

architectures to modern architectures and come to the “Cloud

Native” approach, which is one of the most popular architectural

approaches today. Cloud Native actually means cloud-native

architecture. A cloud-based application must be scalable and

suitable for automation. It is very important that it can be easily

deployed in any cloud environment and moved when necessary.

We talked about public cloud, private cloud and hybrid cloud

approaches. It is important that a cloud native application adapts

to all cloud infrastructures here. Applications that are compatible

with the cloud native approach are listed according to categories

on the Cloud Native Computing Foundation (CNCF) website.

IEEE-SEM, Volume 12, Issue 2, February 2024
ISSN 2320-9151 26

Copyright © 2024 IEEE-SEM Publications

IEEESEM

CNCF has more than 400 members, including cloud providers,

enterprise software companies and technology entrepreneurs.

Microsoft, Oracle, VMware, Intel are among these members. A

cloud native system must be durable, manageable and observable.

Industry-leading cloud providers also offer cloud tools and

services so that developers can have faster development processes.

Figure 5 Cloud Native Components

Cloud computing has become a game-changer in the world of

technology and has completely changed the industry. Almost all

technology is now concentrated on the cloud, from the first point

of software development to the last point reached to the user and

maintenance services. Developing applications without being tied

to a single software language, operating system and a single tool,

packaging these applications and delivering them to all clients

from a single place, instantly presenting an update to the whole

world and realizing this on more than one cloud, migrating from

cloud to cloud and all this very quickly. Realizing it in some way

really explains the importance of the cloud much better. When we

consider how difficult this process is in traditional architectures,

we understand how the market potential of cloud systems has an

upward trend in 10-year charts. Global cloud market volume will

increase to 4x today's volume on average by the 2030s

Figure 6 Global Cloud Infrastructure Services Market Size Insights

Forecasts to 2032[2]

Looking at Flexera's cloud market research, 24% of cloud users

use only public cloud, while only 4% use only private cloud. 72%

of them use hybrid cloud. Hybrid cloud was preferred because

private cloud is generally required in regulated sectors. In general

terms, hybrid cloud is an ideal architectural approach for most

sectors. [2]

Figure 7 Public vs Private Cloud Usage [2]

After taking a look at public, private and hybrid cloud issues, there

is a final approach where we can use many cloud environments as

an alternative. Multi-cloud architecture. In this architecture,

services offered by more than one public cloud provider are used

together. Thus, when a hyperscaler offers services that are much

more advantageous and performant than others, the chance to use

this service is not missed. It is a very beautiful architectural style

and companies are slowly starting to switch to this structure.

Services that are not available in some public cloud environments

may be available in others, or it may be necessary to evaluate

different regional availability zones and data centers on a country-

by-country basis. Therefore, multi-cloud is a very logical and

useful architectural solution according to today's agility approach.

Figure 8 Multi-cloud Usage[2]

The question 'Which architectural approach should I choose?' is

generally asked by all system architects and developers, and in

fact, the better and stronger we lay the foundation of a building,

the more robust it will remain as the application grows and scales.

Likewise, the choice of architecture in IT systems is also very

important, just like a building. Especially if you are a company

that comes from the past and has legacy systems, switching

directly to modern architecture will take a lot of time and cause

serious problems in terms of resources and accessibility. First of

IEEE-SEM, Volume 12, Issue 2, February 2024
ISSN 2320-9151 27

Copyright © 2024 IEEE-SEM Publications

IEEESEM

all, it is necessary to plan this transition very well. In this planning,

it would be good for the first stage to create a private cloud

environment from legacy architectures. If we can provide a private

cloud environment and manage resources in the SDDC

environment, our job will be much easier. Because most of the

SDDC infrastructures have cloud connections. It has hybrid and

multi-cloud management features. VMware and HPE platforms

develop end-to-end enterprise solutions in this regard. [3]

After the private cloud transition, you will now manage your

resources from a common pool. Likewise, you will manage your

network and storage resources from a common pool. You can start

your corporate cloud migration by relocating your applications in

your SDDC-based datacenter. Starting transformation projects

will be a good step for you to gradually transition monolithic

applications to a modular, monolithic and microservices structure.

As your applications gain a modern architectural approach, you

can now move your applications located on the private cloud to

the public cloud infrastructure. Since cloud is a very

comprehensive subject, you can get support from experts and

consultants trained in this field or establish your own cloud team.

The SDDC tool you have used will probably give you an

advantage in multi-cloud management and you will be able to

manage all your nodes and clusters from a single center. With

microservices transformation, you have turned your applications

into a cloud native feature and can move your containerized

applications to the cloud environment of your choice. DevOps

teams and cloud teams will work together on this issue and design

your CI/CD processes and service management in an

interconnected way.

Some of your applications may still remain as monoliths, and that's

okay. You don't have to convert all your services into

microservices. You may have APIs that do a single job, and these

are internal APIs that do not open to the outside. These

applications can remain the same and be scaled in transformation,

but transforming your applications that are exposed to heavy

traffic with a microservices approach will be very good for the

long-term health and maintenance of your company and

applications.

VI. CONCLUSION

In this article, we have discussed the end-to-end journey of the

software and took a look at both the software architectures and the

infrastructure architectures in which this software is deployed,

from monolithic applications to microservices, from private cloud

to multi-cloud, and we created an idea about the future with the

statistics prepared on this subject. Cloud space is a very wide area

and there is no single truth. Each strategy brings with it different

architectural approaches. You should analyze the systems well and

design your architectures by foreseeing the medium and long-term

future, not today.

REFERENCES

[1] Imran, Hamza & Latif, Usama & Ikram, Aziz & Ehsan, Maryam & Ikram,
Ahmed & Khan, Waleed & Wazir, Saad. (2020). Multi-Cloud: A
Comprehensive Review. 1-5. 10.1109/INMIC50486.2020.9318176.

[2] Flexera, "2023 State of the Cloud | Report," https://info.flexera.com/CM-
REPORT-State-of-the-Cloud?lead_source=Organic+Search

[3] Hong, Jiangshui & Dreibholz, Thomas & Schenkel, Joseph & Hu, Jiaxi.
(2019). An Overview of Multi-cloud Computing. 10.1007/978-3-030-15035-
8_103.

AUTHOR

Mehmet Altug Akgul – Mehmet Altug Akgul, Cloud Solutions

Architect, info@altug.dev

IEEE-SEM, Volume 12, Issue 2, February 2024
ISSN 2320-9151 28

Copyright © 2024 IEEE-SEM Publications

IEEESEM

https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic+Search
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic+Search
mailto:info@altug.dev

