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ABSTRACT 

Leveraging high-quality demands of cognitive communication 
on auto-negotiation places much demand on efficient machine 
learning technique. Cognitive agents change 
transmission/reception parameters to communicate efficiently 
during cognition. Reconfigurable Communication system (RCS) 
are capable of implementing experience replays to achieve high-
quality network demand whenever agents perceive network 
conditions. Engaging peering technique to offer dynamism in 
frequency selection, spectrum negotiation, adaptations for 
engaging  planning, decision and actions, reconfiguration is 
achieved via cognition. co-operative communication in RCS 
places much demand on accurate spectrum-sensing. With single 
agent, passive algorithms are implemented sharing sensed-
information, but learning becomes pivotal process while 
achieving end-to-end goal over shared-spectrum. For this 
reason, reinforced learning is demanded in cognitive systems for 
learning  environmental parameters to objectively meet 
application requirements of dynamic spectrum access (DSA). To 
this purpose, Markov model is presented using investigative 
analysis of sequential processes to demonstrate reinforced 
decisions required during cognition. For optimal performance 
and desired returns over pooled spectrum, Markov processes 
enable multiple agents participation to offer cumulative rewards 
of faster/active decisions rather than passively implemented 
decision with single agent. Reinforced learning (RL) over 
shared-spectrum facilitates continuous learning via experience 
replays. Better reward, achievable with multiple agents also 
guarantee profitable information-sharing in pooled-spectrum. 
Also, co-operatively communicating hosts enable active 
decisions to enhance network-wide performance.  Therefore, RL 
offer continuous learning beneficial to reconfigured systems. In 
addition, facilitated thorough experience replays, evidently 
implemented for active learning and suitable decisions,  RL is 
preferred deep learning technique guaranteed with machine 
learning efficiency needed for cognition performances in RCS.  

CCS Concepts 
Artificial Intelligence---Data management procedures;300, 
machine learning---reinforcement techniques;500, graph-
based methodology---markov process;500, cognitive 

computing modeling; 300, radio spectrum resources;100 and 
shared-spectrum techniques;100.  
 

Keywords 
Cognition, markov process; machine learning; reinforcement 
learning; reward. 
 

1. INTRODUCTION 
Re-configurable Communication System (RCS) is an intelligent 
model characterized with  cognition and reconfiguration 
computational processes. Cognition techniques and DSA 
computations embeds observation, orientation and machine 
learning (ML). In cognitive radio networks, cognitive process is 
importantly applied to enable reconfiguration and  DSA 
implementations. Cognitive cycle implements spectrum sensing, 
spectrum sharing, spectrum mobility and spectrum handover  
described in [1] and reviewed in [2]. Cognitive Radio 
Technology (CRT) is guided by Wireless Regional Area Network 
(WRAN) IEEE 802.22 standard, described as emerging 
technology in [3] and based on Software Defined Radio (SDR) 
technology. Also specified by Institute of Electrical Electronics 
Engineers, CRT enabled interoperability with lower standards 
and CR feature DSA to increase spectrum-resource utilization 
by wireless systems [4]. 
Cognitive networking (CN) wireless communication paradigm 
enable spectrum-sharing, whereby cognitive agents change 
transmission/reception parameters to efficiently communicate 
while  avoiding interference with licensed users [5]. CR 
architecture, intelligently co-ordinates radio resources on one 
hand while implementing ML techniques on the other hand to 
deliver services as described in [6].  Shared-spectrum and 
associated DSA techniques enable co-existence of both licensed 
and unlicensed hosts in CRT. Through learning and reasoning 
techniques of machine learning, unlicensed hosts strategize and 
temporarily occupy unused licensed-spectrum majorly, to 
alleviate spectrum scarcity illusion highlighted in [7].  
Infrastructural wireless model provided environments for several 
ML techniques to be  applied on CR spectrum for addressing 
network management issues, including spectrum sensing, 
spectrum selection, adaptive routing and spectrum-mobility [8]. 
RCS  model generally provides dynamic network shaping using 
core idea of SDR’s remotely controlled hardware described in 
[9] to offer opportunistic communication over white spaces. 
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Discussed in [10], design specifications for RCS model provides 
ubiquitous, interactive and collaborative sensing, which enabled 
CR hosts engage peering technique to potentially commission 
each host agent to scale over sub-carriers, which are activated 
for opportunistic and multiple access and communication 
efficiency in mobility.  
Typically, spectrum optimization in CRN is evaluated using 
cross-layer (CL) techniques and implementation of cognitive 
medium access control (cogMAC) functions described in [11] to  
enable collaborating peers enhance  spectrum resource 
utilization. Also, CRT and associated DSA  continuously deliver 
reliable and qualitative service through envisioned ML 
techniques, symbolically offer higher data rates in RCS 
framework [12]. Therefore, RCS model is basically Cognitive 
Radio System (CRS), equipped with ML computations and 
standardized by IEEE802.22WG [3]. For guaranteed and best-
effort Quality of Service (QoS) requirements, CR-CL design 
specifications reported in [11] provided ubiquitous access, 
scaling and improved performances in wireless communication. 
Reinforcement Learning (RL), an online machine learning 
paradigm is considered the most suitable for agents to discover 
optimal sequence of actions required for performing required 
tasks while agents interact with its environment [13]. An 
exhaustive review on RL application in CR literature was 
surveyed and presented in [14] as application-driven and 
learning methodology-driven taxonomies to analyze impact of 
RL techniques in CR networking. Leveraging the high-quality 
demands of wireless communication on auto-negotiation places 
much demand on efficient learning techniques. This is 
characterized in experience-based RL techniques, which is 
implemented to scale network performance. 
  

2. RE-CONFIGURABLE  SYSTEM 
FRAMEWORK 

Reconfigurable communication system as intelligent framework, 
consists of cognitive hosts agents, defined for discrete-time 
stochastic process modeled-mobility over a random waypoint 
𝑃𝑃𝑖𝑖(𝑥𝑥)selection where 𝑥𝑥 = 1, … , 𝑡𝑡, is characterized with CRT 
technology and DSA techniques. The framework provision for 
reliable, qualitative and continuous service whereby dynamic 
model is created by movements to initiate self-organization 
through observation/orientation while learning is facilitated for 
activation and decision for reconfiguration [15]. 

RCS framework model of cognitive agents (CA), is equipped for 
reconfiguration based on facilitated cognition as shown in 
Figure 2. Host agents, distinguished as licensed or unlicensed in 
[15], is enabled to transmit or receive in wide area simulation 
(1cm approximated as 100kilometres on plane surface). 
Characteristic performance of the model was discussed in [16] 
while proposed protocol for implementing spectrum-handover 
was evaluated in [17]. RCS agents are cognitively-equipped 
hosts, modelled with mobility in [15] and enabled to periodically 
scan allocated channels of frequency-spectrum to communicate 
while licensed hosts (LH) is idle. Unlicensed Host (UH) finds 
another white-space to operate upon request of spectrum by LH. 

 

 

 

 

 

 

   

 

 

Figure 1.  Conceptual RCS framework 

Through cognition process, UH are made to transmit or receive 
over licensed channel for reasonable amount of time without 
interference with LU, but implements spectrum-mobility to 
transfer communication to a white space, and in agreement with 
given specifications in [11] requires host agents first resolving 
layer-2 (cogMAC) configuration problem before establishing 
network-wide communication. 

2.1 Cognition Processes and Actions 
Cognition is initiated via spectrum sensing and observation 
processes. Cognitive cycle enable hosts step through various 
stages to observe, orient, plan, learn and decide for actions. 
Orientation with the environment initiates spectrum-sensing and 
observations shown in Figure 2. RCS model architecture for 
continuous activities within cognition cycle before  
reconfiguration is initiated as illustratively discussed in [15]. 
Action distribution over each defined states of sensing, sharing, 
mobility and handover) was modelled by Distribution 
Coordination Function (DCF).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Cognitive processes defined in RCS 

For effective CL functionality, reconfiguration is facilitated by 
adaptation of cognitive agents to parameters observed in the 
environment. Through deep learning methodology, RL is 
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facilitated to enable host agents generate experiences, on 
stepping through the cognition stages illustrated in Figure 2.  

2.2 Shared-Spectrum by RCS agents in 
stochastic environment 

Stochastic process is defined for RCS as randomly controlled 
phenomenon by probability law, where unlicensed agents are 
enabled to utilize unused licensed channel to maximize 
communication throughput without causing perceptible drop in 
QoS to channel owners. Required agility for abstracting control 
from forwarding network data is associated with cognitive 
processes. Embedded  cognitive processes cycles until agents 
decisively change states based on action outputs. To this end, 
Neighbour Discovery Algorithm was formulated for RCS in [18] 
and proofs to evaluate  connected graph properties to abstract 
RCS capabilities was presented in [19].  

Peering agents implement collaboration in spectrum-sensing 
based on Latin square to enable cognitive process associate 
spread-signal technique over large number of distributed 
subcarriers [15]. Centralized cognitive architecture presented in 
[15] established defined orthogonality principle evaluated in 
[16] for both licensed and unlicensed agents. Two signal 
functions 𝑥𝑥𝑞𝑞  and 𝑥𝑥𝑘𝑘  respectively defined for licensed and 
unlicensed hosts over interval [𝑎𝑎, 𝑏𝑏] is expressed in (1).  

�𝑥𝑥𝑞𝑞 ⋅ 𝑥𝑥𝑘𝑘� = ∫ 𝑥𝑥𝑞𝑞(𝑡𝑡)bU
𝑎𝑎 ⋅ 𝑥𝑥𝑘𝑘(𝑡𝑡)dt = {1,𝑘𝑘 = 𝑞𝑞| � 

 (1) 

Their combination is zero except for 𝑥𝑥𝑞𝑞(𝑡𝑡) = 𝑥𝑥𝑘𝑘(𝑡𝑡). This 
property enable coexistence of LH and UH transmitting on same 
spectrum band with the following proofs: 

2.2.1  Proof: Universality of channel availability  

Let each host be assigned a unique identifier [1...𝑁𝑁], where N  
is the upper bound of hosts in the RCS, and 𝐴𝐴𝑈𝑈 =
{𝑐𝑐1, 𝑐𝑐2,..., 𝑐𝑐𝑀𝑀}represents the universal set of available 
channels, potentially accessible by all hosts.  

All hosts are aware of 𝑁𝑁, 𝑀𝑀 and𝐴𝐴𝑈𝑈  and each host 𝑖𝑖 if equipped 
with r multiple-input-multiple-output (MIMO) transceivers, 
where 1< r < min(M, N),  is aware of channel availability set𝐴𝐴𝑖𝑖 , 
which is same for every node. 

2.2.2 Proof: Neighbour characteristics of host 

agents 

Hosts 𝑖𝑖 and  𝑗𝑗 are neighbours represented by undirected edge or 
pair of directed edges in graph. Transmission between hosts is 
achieved by single hops and 𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑗𝑗 ≠ 0 whenever 𝑖𝑖 and 𝑗𝑗 
are within each other’s radio access range but communication 
between non-neighbour hosts is achieved by multi-hop 
transmission. 

 

 

2.3 Markov Chain Process and Properties 

Markov chain as fundamental stochastic processes, satisfies the 
Markov property of predicting the past and future states 
independently of known present state. With known current state, 
additional information of past state(s) are not required to make 
predictions of future. Simplicity of Markov as memoryless 
process allows great reduction of parameters for cognition 
processes and also suggests its suitability in real-world 
processes. Since the chain symbolize sequence of random 
variables   𝑋𝑋𝑛𝑛+1 enabled to be conditionally independent of 
𝑋𝑋0,,…,𝑋𝑋𝑛𝑛−1 given 𝑋𝑋𝑛𝑛 , process output 𝑌𝑌𝑛𝑛 is independent of past 
states 𝑋𝑋0,,…,𝑋𝑋𝑛𝑛−1provided state 𝑋𝑋𝑛𝑛  is known. Also, a 
transition matrix (𝑇𝑇)of transition probabilities, enables RCS 
dynamics with host state 𝑆𝑆𝑡𝑡  to capture all relevant information 
concerning agents’ behaviour from history.  

Therefore, Markov Process for RCS model presented in Figure 3 
is a tuple (𝑆𝑆,𝑃𝑃) where S is set of states (𝑠𝑠) and P is property 
defining each state of sensing, sharing, mobility or handover.  

𝑆𝑆𝑡𝑡  is Markov. To make (2) valid whenever 𝑆𝑆𝑡𝑡  is current state 
and 𝑆𝑆𝑡𝑡+1 the next state. S is finite set of states (sensing, 
sharing, mobility, handover) observed in RCS cognition 
processes. 

 𝑃𝑃(𝑆𝑆𝑡𝑡+1 ∨ 𝑆𝑆𝑡𝑡) = 𝑃𝑃(𝑆𝑆𝑡𝑡+1 ∨ 𝑆𝑆0)  (2) 

 

 

 

 

 

 

 

 
 

Figure 3. Markov Process States 

Reward property of Markov process indicates  continuous 
learning as host agents actively switch between states to take 
decisions appropriately among actions including observe, plan, 
act, orient or learn. Return is measurable on target network as 
cumulative reward and Markov Reward culminates to Markov 
Decision Process (MDP) whenever rewards are attached to 
transitions probabilities [20].  

2.3.1 Markov Reward Process (MRP) 

 Environment 
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Markov Reward Process (MRP) is expressed in (3) as a tuple 
(𝑆𝑆,𝑃𝑃,𝑅𝑅,⋎);  where S is the finite set of states (sensing, 
sharing, mobility, handover);  P is state transition probability 
matrix, 𝑃𝑃𝑠𝑠𝑠𝑠𝑒𝑒′ = 𝑃𝑃[𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′ ∨ 𝑆𝑆𝑡𝑡 = 𝑠𝑠] for spectrum 
sensing; 

R is the reward function, 𝑅𝑅𝑠𝑠 = 𝐸𝐸[𝑅𝑅𝑡𝑡+1 ∨ 𝑆𝑆𝑡𝑡 = 𝑠𝑠] and ⋎is a 
discount factor on reward, ⋎∊ [0,1]   
 (3) 

Extra quantity-reward, attached to every observation made on 
the environment during transition from states within cognitive 
process is MRP and a Markov chain with transition- valued 
actions. MRP is therefore, a Markov chain with decision, with 
values assigned to the transitions towards decisions - sense, 
orient, observe etc during cognitive processes. Observations are 
better estimates of transition probabilities in practice and 
stationarity property is implied in Markov chain where transition 
probability may not change over times [21]. 
 

2.3.2 Markov Decision Process (MDP)   

Markov Decision Process is MRP with decision and return. To 
arrive at decisions, the transition matrix is conditioned with 
value function to obtain Reward R for taking decision Actions A 
and subsequent return Gt. Gt is the total discounted reward R 
from time-step t on state s. Gt is a long-term reward of host at 
state s when host agent no longer (passively) observe state 
transition but actively choose an action from set of actions A.  

Therefore, MDP, expressed in (4) is a tuple (𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅,⋎); 

where S is finite set of cognition states (sensing, sharing, 
mobility, handover); A finite set of cognitive actions (observe, 
orient, plan, decide, learn,…,act); and P the state transition 
probability matrix, given as 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒′ =P[𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′ ∨ 𝑆𝑆𝑡𝑡 =
𝑠𝑠,𝐴𝐴 = 𝑎𝑎]  for cognitive  spectrum-sensing state; R is the 
reward function, 𝑅𝑅𝑠𝑠𝑎𝑎 =E[𝑅𝑅𝑡𝑡+1 ∨ 𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴 = 𝑎𝑎] and ⋎is a 
discount factor on reward, ⋎∊ [0,1] (4) 

 

2.4 Optimized CogMAC for Perceptual      
 Computing 

In the decision problem of each communicating host agent, 
cognitive process is patterned by Markov chain to ensure each 
agent decides best action to actively participate and/or select 
based on current state and not on previous state(s). This is the 
basis for hosts interacting with the environment during 
spectrum-scanning and spectrum-sensing. These conditions are 
utilized in the exploration of experience replays until the 
experiences are exploited in goal-oriented reinforcement 
learning (RL). Each host agent is subjected to available 
operating parameters in the operating environment. 

Operating parameters required and defined for cognition 
includes bandwidth (B), error-rate €, transmission power (𝜌𝜌), 
centre frequency (w)  and modulation index (b). Throughput 
(Th) evaluation by divide-and-conquer approach in multi-carrier 
transmission over M channels enable cognitive hosts engage in 

non-continuous orthogonal frequency division multiplexing, 
where each sub-carrier frequency has its own set of x and y 
variables as illustrated in (5) and (6).  

Symbolically,  

𝑥𝑥 = {𝑏𝑏, 𝑒𝑒, 𝜌𝜌,𝑇𝑇ℎ,𝐵𝐵, 𝑙𝑙}     (5) 

and  

𝑥𝑥 = ∑ 𝑤𝑤𝑖𝑖 ∙𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑥𝑥)   (6) 

where the weights w and biases f  are fine-tuned via 
backpropagation and training to give correct predictions as 
resultant outputs. In the event of wrong predictions, the system 
propagates to retrain and update weights and biases to reduce 
errors as discussed in [22] and [23]. 

With N cognitive host agents, each n has complete control over 
the external parameters x that are jointly sensed and pooled for 
sharing as discussed in [24]. Containing both license and 
unlicensed hosts, the pooled spectrum universally provide 
opportunistic access for all cognitive host agents to recognize 
what is going on within the environment. This forms the basis 
for perceptual computation model expressed in (7), assuming a 
constant value of specific centre frequency (𝜔𝜔. 

�́�𝑥=𝑗𝑗 =
1, …𝑀𝑀�𝑛𝑛 =

1, … ,𝑁𝑁��𝑏𝑏𝑖𝑖,𝑛𝑛 , 𝑒𝑒𝑖𝑖 ,𝑛𝑛 ,𝑝𝑝𝑖𝑖 ,𝑛𝑛 ,𝑇𝑇ℎ𝑖𝑖,𝑛𝑛 ,𝐵𝐵𝑖𝑖,𝑛𝑛 , 𝑙𝑙𝑖𝑖 ,𝑛𝑛 ,𝜔𝜔𝑖𝑖,𝑛𝑛���  (7) 

 

3.  MODELING MARKOV PROCESS FOR 
 COGNITIVE STATES 

Cognitive process events includes spectrum sensing  (sse) and 
spectrum sharing (ssh) as distinct states, actively implemented 
by host agents in RCS. Markov process enable cycles switching 
between these states, according to some laws of dynamics to 
establish the Markov decision process. With repeated switching, 
system changes are observed as replays and experiences are 
generated from replays.  

With the Markov property, generated experience enable future to 
be independent of past but only the present. A transition matrix 
(𝑇𝑇)containing transition probabilities is defined for system 
dynamics with state 𝑆𝑆𝑡𝑡  capturing all relevant information for 
target from history.  

Therefore, Markov Process algorithm specified for RCS is given 
in (8) as a tuple (𝑆𝑆,𝑃𝑃) where S = {sensing, sharing, mobility, 
handover} states and P the transition probability for 𝑆𝑆𝑡𝑡  provided 

𝑃𝑃(𝑆𝑆𝑡𝑡+1 ∨ 𝑆𝑆𝑡𝑡) = 𝑃𝑃(𝑆𝑆𝑡𝑡+1 ∨ 𝑆𝑆0)  (8) 
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3.1 State-space created with experience 

replay 

RCS agents interacts with each other to activate reconfiguration. 
Agents generate experience via these interactions and 
experiences grow in replays, managed as buffer. State-space 
property created the model expressed in (8) as a tuple 
(𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) where s is the state for any action a, where r is the 
reward for next state  s’. 

The target network is, therefore, obtained from expected return 
of reinforced learning model in (9). 

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑟𝑟 +⋎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎′ 𝑄𝑄(𝑠𝑠′ ,𝑎𝑎′)  (9)  

3.2 Quantitative analysis of MDP 

Based on the cognitive processes defined for RCS as presented 
in Figure 2, switching between states such as spectrum-sensing 
(sse) and spectrum-sharing (ssh) is modeled as transition 
probabilities, observed as episodes in practice. These transitions 
are  quantitatively assumed to determine MRP using specified 
model presented in Figure 4. With transition probabilities as 
better estimates in quantitative analysis than observations, 
rewards applicable to each action within sensing state is 
quantified assuming the implied stationarity property of no 
change of decision in states over transition period. 

 

 

 

 

 

 

 

 

 

 
 

  Figure 4. Sample episode of transitions 

Attaching reward values to transition episodes illustrated in 
Figure 4, matrix T is obtained as shown in  Table 1. 
 

Table 1. Observed episodes of decisions in sensing 
state 

 Orient Plan Learn Act 
Orient 0.6 0.4 0.0 0.0 
Plan 0.0 0.1 0.7 0.2 

Learn 0.0 0.2 0.5 0.3 
Act 0.2 0.2 0.1 0.5 

 

3.21 Value function of sensing state 

Value function V(s) of MRP is  expressed in (10) to capture 
expected return over the  states where 𝐺𝐺𝑡𝑡  is made to represent 
cumulative reward of collaboratively taken actions. 

 𝑉𝑉(𝑠𝑠) = ∑[𝐺𝐺𝑡𝑡 ∨ 𝑆𝑆𝑡𝑡=𝑠𝑠]          (10) 
 

Observed reward values  given in Table 2 showed stationarity 
property of MRP, which also implied no reward since state 
transition reward are either positive or negative based on 
decisive actions taken in cycles. 

Table 2. Transitions with reward 

State transition reward 
orient => orient  1 
orient => plan 1 
plan => act 3 
plan => learn 1 
act => act -1 
act => learn -3 
act => plan 1 
learn => learn 5 
learn => act 2 
learn => plan 1 

 
Using expression (10), decision rewards based on all actions are 
quantified as follows: 

𝑉𝑉(𝑎𝑎𝑐𝑐𝑡𝑡) = −3 ∗ 0.5 + 2 ∗ 0.3 + 1 ∗ 0.2 = 0.7 
𝑉𝑉(𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒𝑛𝑛𝑡𝑡) = 1 ∗ 0.6 + 1 ∗ 0.4 = 1.0 

𝑉𝑉(𝑙𝑙𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛) = 5 ∗ 0.5 + 2 ∗ 0.1 + 1 ∗ 0.2 = 2.9 

𝑉𝑉(𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛) = 3 ∗ 0.7 + 1 ∗ 0.2 = 2.3 

Value function of the state learn indicated highest reward of 2.9, 
which is an indication of reinforcement. Minimal reward of 0.7 
is obtained in actions while 1.0 is expended on orientation. 

Cumulative reward 𝐺𝐺𝑡𝑡 ,which is the Return on experience 
replays and actions is expressed as extra-quantity-reward given 
in (11): 

 𝐺𝐺𝑡𝑡 = 0.7 + 1.0 + 2.9 + 2.3 = 6.9  (11) 

Total discount of sensing state is 6.9 where discount ⋎ = 0, 
⋎∊[0,1] and V = 0 is the present value of future rewards.  

4. RESULT AND DISCUSSIONS 

MDP is quantitatively analyzed to illustrate universality of host 
agents over shared-spectrum. Replay is enhanced by 
collaboration and peering between host agents in RCS model. 
Interoperation within participating hosts defined by expression 
(1) included both licensed and unlicensed occupants benefiting 
from shared-spectrum. 

1.0 

act 
0.5 

0.3 

0.1 

learn 0.2 
0.2      0.2 

0.2 
0.2 

plan 

orient 
0.4 

0.6 
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The extra-quantity reward obtainable via RL is beneficial to 
RCS models as proved in (8) because cumulative reward will 
enable host agents observe state transitions passively but 
actively choose actions more profitably each time it senses the 
environment. Under this arrangement, greater return is achieved 
with collaborations and greater probability for target states is 
attributed to efficient learning.  

Through RL, replay experiences generated offer better 
estimation of  fine-tuned operating parameters required for   
backpropagation techniques of neural network model expressed 
in (5).  Peering and collaboration of host agents make RCS jolt 
into actions over pooled and shared-spectrum to achieve greater 
rewards than single agent where spectrum parameters are 
inefficiently utilized when accessed by licensee owners as 
evaluated in (6).  
 

5. CONCLUSION 

Cognition is essential process while dynamic spectrum 
technology remains the underlying implementation in RCS. 
Potency of reinforcement learning (RL) as preferred deep 
learning method signifies greater learning reward as target 
networks attract more profits. Cognition is targeted  for 
reconfiguration  where active sequential decision is based on 
current state. 

RL approach offer continuous learning beneficial to 
reconfigured systems. RL approach equip host agents to 
discover optimal sequence required to achieve greater 
performances while interacting continuously (repeatedly) using 
Markov Decision Process (MDP) principle. In addition, the 
experience replays, which is facilitated thorough RL approach 
evidently implement active learning and desirable decisions.  RL 
is therefore preferred as deep learning technique to achieve 
guaranteed machine learning efficiency, which are for better 
performances for cognition in RCS.  

 

cumulative reward of 𝐺𝐺𝑡𝑡 = 6.9 Better utilization of resources 
are returns due to learning efficiency, with all actions of act + 
orient + plan + learn  profitably implemented. 

and  for reconfiguration using CR-CL computational techniques 
specified in [26], all operating parameters evaluated in [25] 
remain valid  

Guaranteed continuous learning and greater reward is beneficial 
to resource-sharing and increased system profitability, these 
findings therefore suggests RL as deep learning technique 
suitable for future generation RCS.  
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